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QUASIREDUCIBLE OPERATORS

C. S. KUBRUSLY

ABSTRACT. The concept of quasireducible operators is introduced in this pa-
per. Basic properties and illustrative examples are considered in some detail
in order to situate the class of quasireducible operators in its due place. In
particular, it is shown that every quasinormal operator is quasireducible. The
following results link this class with the invariant subspace problem. Theo-
rem: Essentially normal quasireducible operators have a nontrivial invariant
subspace. Corollary: Quasireducible hyponormal operators have a nontrivial
invariant subspace. The paper ends with some open questions on the charac-
terization of the class of all quasireducible operators.

1. INTRODUCTION

Let 'H be a complex Hilbert space of dimension greater than one. By an operator
on ‘H we mean a bounded linear transformation of H into itself. A subspace M of
H is a closed linear manifold of H. M is nontrivial if {0} # M # H. If T is an
operator on ‘H and T(M) C M, then M is invariant for T (or M is T-invariant),
and hyperinvariant for T if it is invariant for every operator that commutes with
T. If M is a nontrivial invariant subspace for 7', then its orthogonal complement
M+ =H S M is a nontrivial invariant subspace for the adjoint 7% of T. If M is
invariant for both T'and T* (equivalently, if both M and M+ are T-invariant), then
M reduces T (or M is a reducing subspace for T'). An operator is reducible if it has
a nontrivial reducing subspace or, equivalently, if it is the (orthogonal) direct sum
of two operators on nonzero subspaces. Recall that a scalar operator is a (complex)
multiple of the identity, and also that a projection is an idempotent operator whose
range and kernel are orthogonal to each other. A projection P is nontrivial if
O # P # I, where O and I denote the null operator and the identity, respectively.
We begin with a well-known result on the characterization of reducible operators
(see e.g., [4] p.159), which helps in the definition of quasireducible operators.

Proposition 1.1. Let T be an operator. The following assertions are pairwise
equivalent.

(a) T is reducible.

(b) T commutes with a nontrivial projection.

(¢) T commutes with a nonscalar normal operator.

(d) There exists a nonscalar operator that commutes with T and with T*.

Thus an operator T is reducible if and only if there exists a nonscalar operator
L such that LT = TL and T*L — LT* = O. That is, if and only if there exists a
nonscalar operator L in {T'} N{T*}’, where {T'}' denotes the commutant of 7.
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Definition 1.2. An operator T is quasireducible if there exists a nonscalar L such
that

LT=TL and rank((T"L—LT*)T —T(T*L - LT*)) <1.
In other words, T is quasireducible if there exists a nonscalar L in {T'}’ such that

either T*L—LT™* also lies in {T'} or the commutator [(T*L — LT*), T) is a rank-one
operator.

Clearly, every reducible operator is quasireducible. Here is an alternative charac-
terization of quasireducibility. Let Dy denote the self-commutator of T":

Dy =TT =TT-TT".
If LT = TL, then DyL — LDy = (T*L — LT*)T — T(T*L — LT*) so that T is
quasireducible if and only if there exists a nonscalar L such that

LT=TL and rank(DyL—LDy)<1.

Elementary facts about quasireducibility, which will be needed in the sequel,
are stated in Propositions 1.3 and 1.4 below. Proposition 1.4 says that quasi-
reducibility (as reducibility) is preserved under unitary equivalence. Their proofs
are straightforward, hence omitted.

Proposition 1.3. If T is quasireducible, then
(a) AT is quasireducible for every A € C,

(b) M + T is quasireducible for every X € C,
(¢) T™* is quasireducible.

Proposition 1.4. Fvery operator unitarily equivalent to a quasireducible operator
is quasireducible.

2. FINITE-DIMENSIONAL EXAMPLES

First we shall exhibit a nonquasireducible operator that is similar to a reducible
one. Thus (as reducibility) quasireducibility also is not preserved under similarity.

Example 2.1. Set H = C? and identify the operators on C3 with their matrices
with respect to the canonical basis for C3. Let

1 -1 1 -2 -1 2
T=10 0 0 so that Dr=1-1 2 -1
0 1 0 2 -1 0

Any nonscalar L that commutes with 7" is of the form

oY 5 gl
L=10 oa—v 0 ,
0 -5 o—7

where 3 and 7y cannot be both null. Thus
=2y 2v-68 [B—-4y
DrL— LDy = - 0 - )
2y-p 45 2y-p
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and hence rank(DrL — LDr) > 2 for every nonscalar L that commutes with 7'
Outcome: T is not quasireducible. Now put

/1 0 0 1 0 1
T=10 0 0 and W= [0 1 0],
0 1 0 0 0 1

so that W is invertible and WT = TW. Therefore, the reducible T=1o ((1) 8) is
similar to T, which is not even quasireducible.

An operator T is nilpotent if 7™ = O for some positive integer n. The least
integer n such that T™ = O is the nilpotence index of T

Proposition 2.2. Let T be an operator acting on an arbitrary Hilbert space H. If
T is a nilpotent operator of index n+1 for some n>1, then either T™ is reducible,
or T is quasireducible with nilpotence index 2 on a two-dimensional space.

Proof. Take a nonzero operator T'on H and let A/(T) denote the null space (kernel)
of T. Since N(T') is T-invariant we may write

0O X n O Xyn!
T—<O Y>’ so that T _<O v > for every n>1,
with respect to the decomposition H = N(T) & N (T)*, where X : N (T)+ — N(T)
and Y: N(T)* — N(T)*are bounded and linear. If 7"+ = TT" = O and T" # O,
then the invariant subspace N(T) is nontrivial (0 is an eigenvalue of T'), so that
both N'(T) and N(T)+ are nonzero, and Y™ = O, Y"1 # O and X # O. Hence

" = (O Z ) with  Z = XY™ 1 N(T)* — N(T).

O O
Therefore, with respect to the same decomposition H = N(T) & N(T)*, set
Z7Z* 0] e O AVA
Q_<O Z*Z> so that QT _TQ_(O o ),

where Z*: N(T) — N(T)* is the adjoint of Z. If the nonnegative @) is nonscalar,
then T™ is reducible. Suppose @ is scalar. In this case, Z = A2 U for some positive
scalar A and some unitary transformation U so that A'(T) and A/ (T)1 are unitarily

equivalent, and hence dim NV (T) = dim A (T)%. Now take an arbitrary operator
A: N(T) — N(T) and set, still on H = N(T) @ N(T)*,

A 0 n _ nn O AZ
N—(O /\_1Z*AZ> so that NT _TN_<O O)'

If dim AV (T") > 2, then let A be a nonscalar normal operator so that N is a nonscalar
normal operator as well, and therefore T is reducible. If dimN(T) = 1, then

dim H = 2. In this case we may assume with no loss of generality that T = (8 (1))

on C?. This implies that n = 1, and hence any nonscalar L that commutes with T
is of the form L = (g‘ A ) with 8 # 0, which is never normal. Thus T is irreducible.

[0

However, T is quasireducible because rank(DrL — LD7) = 1. |

Particular case (n = 1): Ewvery nilpotent operator of index 2 is quasireducible. In
fact, a nilpotent operator of index 2 acting on a Hilbert space of dimension greater
than two is reducible; on a two-dimensional space it is irreducible but quasireducible.
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Remark 2.3. 1t is worth noticing that nilpotent operators of higher index are not
necessarily quasireducible. Sample:

0 1 1
T=10 0 1
0 0 0

on C? is a nilpotent of index 3 that is not quasireducible. In fact, any L that
commutes with T is of the form

a B 7 B —280-v —20-4y
L=10 a p so that DrL—LDy = | 0 -2 —28—7x ,
0 0 « 0 0 Ié]

and hence rank(DrL — LDy) > 2 whenever L is nonscalar.

3. INFINITE-DIMENSIONAL EXAMPLES

Recall that an operator T is quasinormal if it commutes with T*7T, subnormal
if it has a normal extension (i.e., if it is the restriction of a normal operator to
an invariant subspace), and hyponormal if Dt is nonnegative. These classes are
related by proper inclusion (Normal C Quasinormal C Subnormal C Hyponormal)
if H is an infinite-dimensional space (otherwise they all coincide with the class of
normal operators). The techniques applied in this section are all standard from
single operator theory and can be found in many sources (see, for instance, [3], [4],
6], [9], [10] and [15)).

Proposition 3.1. Every quasinormal operator is quasireducible.

Proof. We shall split the proof into four parts.
(a) A normal operator is trivially reducible, and hence trivially quasireducible.

(b) A pure isometry (i.e., a completely nonunitary isometry) is precisely a unilateral
shift (by the von Neumann-Wold decomposition). If its multiplicity is greater than
one, then it is the direct sum of two unilateral shifts, thus reducible. If it is of
multiplicity one, then it is not reducible but quasireducible. Indeed, if S, is a
unilateral shift of multiplicity one, then (S7*S, —S.S/)S, — S, (5SS, — S, 5]) =
S, (S, S} —I) is a rank-one operator.

(¢) The von-Neumann-Wold decomposition says that every isometry is the direct
sum of a unilateral shift and a unitary operator (i.e., a normal isometry), where any
of the direct summands may be missing. Thus parts (a) and (b) ensure that every
isometry is quasireducible, and so is every multiple of an isometry (Proposition
1.3-a).

(d) An operator T is a multiple of an isometry if and only if the nonnegative
operator T*T is scalar (reason: an isometry is precisely an operator V such that
V*V = 1I). If T is quasinormal but not a multiple of an isometry, then T*T is a
nonscalar normal operator in {T'}’ by the very definition of quasinormality. Thus
T is reducible, and hence quasireducible. O

A unilateral weighted shift with weight sequence {wy }x>1 is unitarily equivalent
to the unilateral weighted shift with weight sequence {|wg|}x>1. Therefore, accord-
ing to Proposition 1.4, there is no loss of generality in assuming weighted shifts
with nonnegative weights as far as quasireducibility is concerned. Thus, from now
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on, all weight sequences will be assumed nonnegative. We shall say that a diag-
onal operator has multiplicity one if the diagonal sequence is made up of distinct
elements.

Proposition 3.2. Every injective unilateral weighted shift whose self-commutator
has multiplicity one is not quasireducible

Proof. Let W, = shift({wj}r>1) be a unilateral weighted shift on ¢ with weight
(nonnegative) sequence {wy, }x>1 so that WW, = diag(w?, w3, w3, --) and W, W} =
diag(0,w?, w3, w3, -++), and hence

Dy, = WiW, — W, Wy = diag({ok }r>1),

a diagonal operator on EJQF whose diagonal entries are §; = w} and ;41 = w? 1 w}
for every k>1. Recall that W, is injective if and only if W W, is injective, which
means that wy # 0 for every k>1. Let A be an arbitrary operator on ¢ and
identify it with the (infinite) matrix [a;];k>1 that represents it with respect to
the canonical basis for Z_?_.

Claim 1. If D = diag({\x}x>1) is a diagonal of multiplicity one, then A commutes
with D if and only if A is a diagonal.

Proof. This is readily verified once DA — AD = [ozj,k(/\j — )\k)]j p>pe O

Claim 2. If A commutes with an injective unilateral weighted shift W, , then A is
lower triangular (i.e., all entries above the main diagonal are zero) with a constant
main diagonal. Moreover, the entries of each lower diagonal (i.e., of each diagonal
below the main diagonal) are either all zero or all nonzero.

Proof. If W, A= AW, and wy # 0 for every k >1, then (see e.g., [15] p.53)
Wit
Qjtitl,j+1 = (j;—jlajJri,j

for every j >1 and i > 0. Moreover, it is readily verified that A is lower triangular.
For i = 0 we get oj41 j4+1 = @ j, which means that A has a constant main diagonal.
For any 7 >1 this ensures that either the sequence {a1; ;};>1 is null or a4, ; # 0
for every j >1. That is, the ith lower diagonal of A is either zero or entirely made
of nonzero entries. O

Claim 8. If a lower triangular A with lower diagonals either zero or entirely non-
zero does not commute with a diagonal D of multiplicity one, then DA — AD is
not finite-rank.

Proof. Let e, = (0,---,0,1,0,---), with the only nonzero entry equal to 1 at the
kth position, be an arbitrary element of the canonical basis for Z_f. Recall that
DA — AD = [a;k(\j — Ak)]jk>1 for any diagonal D = diag({\x}r>1). If A is lower
triangular (i.e., o, = 0 whenever j < k), then (DA — AD)ej, coincides with the
kth column of the lower triangular DA — AD. Since A does not commute with
D, it follows by Claim 1 that A is not a diagonal: there exists o # 0 for some
pair (j, k) with j > k > 2. Consequently, the lower diagonal to which it belongs is
entirely nonzero. Since D is a diagonal of multiplicity one (i.e., A\; # Ar whenever
J # k), it follows that the lower triangular DA — A D has at least one lower diagonal
made up of nonzero entries. Hence \/{(DA — AD)ey}k>1 is an infinite-dimensional
subspace of range(DA — AD) so that DA — AD is not finite-rank. O

Outcome: Let W, be an injective unilateral weighted shift whose self-commutator
Dy, = WiW, — W, W} has multiplicity one. If A commutes with W, and with
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Dyy,, then A is scalar (Claims 1 and 2). If A commutes with W, but does not
commute with Dy, , then Dy, A — ADy, is not finite-rank (Claims 2 and 3). O

4. INVARIANT SUBSPACES

In this section we investigate a relationship between the concept of quasireducibility
and two major invariant subspace results, namely, Lomonosov’s for compact oper-
ators and Berger-Shaw’s for hyponormal operators. As usual, if an operator T has
a compact self-commutator D, then T is called essentially normal.

Theorem 4.1. Fvery essentially normal quasireducible operator has a nontrivial
invariant subspace.

Proof. The Lomonosov Theorem [11] (see also [14] p.158 or [12] p.42) says that
if a nonscalar operator commutes with a nonzero compact operator, then it has
a nontrivial hyperinvariant subspace. A nice generalization of it was considered
in [5] and [7] (see also [8]): if an operator L is such that rank(KL — LK) =1 for
some compact operator K, then L has a nontrivial hyperinvariant subspace. If there
exists a nonscalar L such that LT = T'L and rank(K L — LK) < 1 for some nonzero
compact operator K, then the above two results ensure that T has a nontrivial
invariant subspace. This proves the theorem whenever the self-commutator Dy =
[T*,T) is nonzero and compact. If Dy = O, then T is normal and the result holds
trivially. O

Corollary 4.2. Every quasireducible hyponormal operator has a nontrivial invari-
ant subspace.

Proof. The Berger-Shaw Theorem [1], [2] (see also [4] p.152) ensures that if a hy-
ponormal operator T has no nontrivial invariant subspace, then its self-commutator
D7 is a trace-class operator, and hence compact; that is, T is essentially normal.
Therefore, if a hyponormal operator has no nontrivial invariant subspace, then it
is not quasireducible by the above theorem. |

5. OPEN QUESTIONS

Apparently, there is a gap between the classes of reducible and quasireducible op-
erators. Consider the class C of all operators T for which there exists a nonscalar
L such that

LT=TL and DyL=LDy.
Clearly, C includes the class of all reducible operators and is included in the class
of all quasireducible operators:

Reducible € C C Quasireducible.

Note that the second inclusion is, in fact, proper (i.e., there exist quasireducible
operators not in C). For instance, take any quasireducible operator T' for which
rank(DrL — LDr) > 1 for every nonscalar L in {T'}’ (samples: unilateral shift of

multiplicity one or, simply, T = (8 (1)) on C?).
Question 5.1. Does the class C coincide with the class of all reducible operators?

In other words, is it true that if T is irreducible, then rank(DyL — LDyp) > 1
for every nonscalar L in {T}? There are many ways to reformulate the above
question. Let us first consider the following proposition.
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Proposition 5.2. T is reducible if and only if there exits a nonscalar L such that
(a) LT=TL, DrL=LDr and
(b) (T*Dy, — D, T*)T =T(T*D;, — D, T*).

Proof. If T is reducible, then there exists a nonscalar L in {T'} N{T*}. Thus
assertions (a) and (b) hold trivially. Conversely, take a nonscalar L and set C' =
T*L — LT*. Recall that assertion (a) is equivalent to LT = TL and CT = TC.
Hence, if (a) holds,

Dc=C"C-CC*=(L*T-TL")C-C(L*'T-TL*) = (L*C-CL*)T-T(L*C-CL").
However, as L*T* =T*L*,
L*c-CcL* = L (T"L-LT*)— (T"L—- LT*)L* = T*D;, — D, T".

Therefore, if assertion (b) also holds, Dc = O; that is, C' is normal. If C' is non-
scalar, then T is reducible (since CT = T'C). If C is scalar, then C'= O (reason:
C' is a commutator and nonzero commutators are nonscalar — see e.g., [6] p.128),
and hence the nonscalar L lies in {T'} N {T*}’; that is, T' is reducible. O

Thus Question 5.1 can be rewritten as: can we drop assertion (b) from the statement
of Proposition 5.27 Equivalently, does there exist a nonscalar normal in {T}
whenever there exists a nonscalar L that satisfies assertion (a)? Another way to
look upon the same question. Fix an operator 7" and consider the unital algebra
Ar of all operators that commute with 7" and with D,

Ap = {L: LT=TL and DrL=LDs} = {T} n{Dr}.

Let C denote the trivial unital algebra of all scalar operators so that the inclusions
C C Ay C{TY} hold trivially. It is readily verified that Ay = {T'}’ if and only if
T is normal. Indeed, if Dr = O then Ay = {T}' and, conversely, if {T'}' C Ar,
then T lies in A so that T commutes with Dy, which means that T is normal (see
e.g., [13] p.5). On the opposite end, if C = Ap, then T is irreducible. In fact, if T
is reducible then any nonscalar L in {T'} N{T*}’ lies in Az. The converse holds
if and only if Question 5.1 has an affirmative answer: is it true that C = Ag for
every irreducible T'?

Both product and (ordinary) sum of quasireducible operators are not necessarily
quasireducible. For instance, set

0 1 0 0 0 1
T=1(0 0 1 sothat T?2= [0 0 0O
0 0 0 0 0 0

T? is a nilpotent of index 2 on C3 (thus reducible) and T is quasireducible (since
rank(T?Dr — Dy T?) = 1) so that I + T is quasireducible by Proposition 1.3-b.
However, T(I + T) = T + T?, which is both a product and a sum of quasireducible
operators, is not quasireducible (cf. Remark 2.3). Is the square of a quasireducible
operator quasireducible?

Question 5.3. Is T™ quasireducible for every integer n>1 whenever T is quasi-
reducible?

Observe that there exist operators for which all (positive) powers are not quasi-

reducible. Sample: T' = ( ;) on C? is idempotent and not quasireducible (actually,
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D1 L — LDr is full-rank for every nonscalar L in {T'}’), and hence every polynomial
of T' is not quasireducible by Proposition 1.3—a,b. This prompts our final question.

Question 5.4. If every polynomial of T is quasireducible, must T be reducible?
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