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MULTIPLICATIVE PERTURBATION BY CONTRACTIONS AND
UNIFORM STABILITY

P.C.M. VIEIRA AND C.S. KUBRUSLY

ABSTRACT. Let T be an arbitrary bounded linear transformation of a Hilbert
space into itself. We investigate classes of contractions S for which the spec-
tral radius 7(ST) of the product ST is less than one. The main result gives a
collection of necessary and sufficient conditions for r(ST) < 1 when T is multi-
plicatively perturbed by compact contractions S. We also give either necessary
or sufficient conditions for perturbation by other classes of Hilbert space con-
tractions, such as those that include the symmetries (e.g., involutions, unitary
operators, self-adjoint, normal and normaloid contractions) or the orthogonal
projections (e.g., nonnegative contractions).

1. INTRODUCTION

A Hilbert space operator T (i.e., a bounded linear transformation of a Hilbert
space into itself) is uniformly stable if the power sequence {T"} converges uni-
formly (or converges in the uniform topology, or in the operator norm topology)
to the null operator (i.e., if [|[T"| — 0). The term “stable operator” is reminiscent
of discrete-time dynamical systems: a discrete time-invariant free bounded linear
system modeled by the following autonomous homogeneous difference equation

Tpy1 =Tz, with g =2, for every integer n >0

is uniformly stable if the Hilbert-space-valued state sequence {z,} converges to
zero uniformly for all initial conditions z. That is, if sup|, = [|[7"z| — 0, which
means that ||77] — 0. In this case, both the above (linear) model and the (linear)
operator T are said to be uniformly (asymptotically) stable.

Uniform stability for infinite-dimensional systems has been under the spotlight
for more than three decades (for finite-dimensional systems many more decades are
to be added on the top of it). Necessary and sufficient conditions for uniform sta-
bility in an infinite-dimensional setup can be found in, for instance, [15], [10], [14]
and the references therein. More recently, still motivated by (asymptotic) stabil-
ity of discrete-time (linear) systems, attention has been directed to multiplicative
perturbations that stabilize the system. This may be synthesized by the question:
given a model as above, which class of operators S is able to make the system

Tpy1 = STx,, with 9 =2z, for every integer n>0

uniformly stable? In other words, which class of operators S ensures uniform sta-
bility for ST (i.e., ensures that ||(ST)"|| — 0)? In an infinite-dimensional setting,
this problem has been investigated in [4] and [2], where the original operator T is
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perturbed by some familiar classes of operators S. Generalizations of the finite-
dimensional results from [1] were considered in [3], where specific convex sets of
operators have been considered.

The present paper addresses multiplicative perturbations. Notational prelimi-
naries are considered in Section 2. Section 3 focuses on sup properties for operators
perturbed by contractions, which provide the main tools for proving multiplicative
perturbation results. There we consider the classes of plain, nonstrict, strict and
uniformly stable contractions (Theorem 1), the class of partial isometries (Theorem
2), and the classes of finite-rank or compact contractions (Theorem 3). The classes
of symmetries, orthogonal projections, and nonnegative operators are also consid-
ered among other classes of Hilbert space perturbing contractions. Uniform stability
for multiplicatively perturbed operators (perturbed by those classes of contractions
investigated in Section 3) are obtained in Section 4. The paper closes with a collec-
tion of necessary and sufficient conditions for compact perturbation (Corollary 7),
after exhibiting a counterexample on the perturbation by symmetries (Remark 3).

2. PRELIMINARIES

Notation, terminology and basic results are posed in this section. By basic
results we mean well-known standard propositions from single operator theory that
will be required in the sequel. These are summarized below in order to settle the
pertinent definitions and recall the necessary elementary facts only. Proofs of all
stated assertions (on single operator theory) can be found in current literature (see
e.g., [5], [8] or [11] among other sources).

Let ( ; ) denote the inner product in a complex infinite-dimensional (not nec-
essarily separable) Hilbert space H. By a subspace of H we mean a closed linear
manifold of H, and by an operator on H we mean a bounded linear transformation
of ‘H into itself. For any operator 7' on H put N(T') = T~*{0} (the kernel or null
space of T, which is a subspace of H) and R(T") = T(H) (the range of T, which is
a linear manifold of H). Let B[H] be the unital Banach algebra of all operators on
H and let T* € B[H] stand for the adjoint of T' € B[H]. The same notation || | is
used for the norm on H and for the induced (uniform) norm on B[H]. An invertible
element from B[H] is an operator T' with an inverse in B[H] which, by the Inverse
Mapping Theorem, means that T is injective and surjective (i.e., N'(T) = {0} and
R(T) =H).

A self-adjoint is an operator T on ‘H for which T* = T. A self-adjoint operator @
is nonnegative (O < @), positive (O < Q) or strictly positive (O < Q) if 0 < (Qz; z)
for every z in H, 0 < (Qz;z) for every nonzero z in H, or a||z||> < (Qz;z) for
every x in H and some positive «, respectively — i.e., Q € B[H] is strictly positive if
and only if it is positive and invertible, which means that it has a (bounded) strictly
positive inverse in B[H]. Recall that every nonnegative operator @ in B[H] has a
unique nonnegative square root Q2 in B[H] and [|Q3||?> = ||Q||. Also recall that
T*T is a nonnegative operator and ||T'||? = ||T*T| for every T € B[H] (standard
notation: |T'| = (T*T)z so that |||T||| = ||T]|).

A contraction is an operator T' on H such that [|T'|| <1 (i.e., ||Tz|| < ||z|| for ev-
ery z in H; equivalently, T*T < I). If ||Tz|| < ||z|| for every nonzero z in H (equiv-
alently, if T*T < I), then T is a proper contraction. A strict contraction is an
operator T" such that || T[] <1 (i.e., supj =y [|[T] <1 or, equivalently, T*T" < I,
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which means that T*T < al for some « € (0,1)). These are related by proper
inclusion: Strict Contraction C Proper Contraction C Contraction. A nonstrict
contraction is a contraction T with ||T|| = 1 and a nonproper contraction is a con-
traction T for with | Tz|| = ||x|| for some nonzero z in H (equivalently, for some x
in H with ||z|| = 1). Every nonproper contraction is nonstrict. A nonnegative (or
positive, or strictly positive) contraction is precisely an operator @) on H such that
0<Q<I(orO<@<I,or0O<Q<1I),where I stands for the identity of B[H].

An isometry on H is an operator V such that ||Vz| = ||z| for every z in H
or, equivalently, such that V*V = [. Every isometry is injective. A coisometry
is an operator whose adjoint is an isometry. A unitary operator is an invertible
isometry or, equivalently, a surjective isometry, which means that an operator U
on H is unitary if and only if it is invertible and U* = U~! or, still equivalently, if
and only if it is an isometry and also a coisometry. An orthogonal projection P on
H is an idempotent operator (i.e., P?> = P) whose range and kernel are orthogonal
to each other, which is precisely a nonnegative idempotent (i.e., O < P = P?);
equivalently, a self-adjoint idempotent (i.e., P* = P = P?). An involution on H is
an invertible operator J that coincides with its inverse (i.e., J = J~1), which means
that J2 = I. A partial isometry is an operator W on H that acts isometrically on
the orthogonal complement of its kernel (i.e., |Wz| = ||| for every z in N'(W)<1).
These are nonstrict contractions: isometries (and coisometries), unitaries, (nonzero)
orthogonal projections, involutions and (nonzero) partial isometries all have norm
equal to 1 (i.e, [V = |1U|| = ||P|| = || /|| = ||W]| = 1). Moreover, these operators
also have a closed range (i.e., their ranges are subspaces of H). A symmetry S is
a unitary involution or, equivalently, a self-adjoint involution or, still equivalently,
a self-adjoint unitary (i.e., S* = S = S~1), which is a nonstrict contraction with
closed range as well. It is readily verified that S is a symmetry (i.e., S is a self-
adjoint involution) if and only if S = I — 2P for some orthogonal projection P (i.e.,
for some self-adjoint idempotent P).

Let p(T) = {A € C: M —T has an inverse in B[H]} be the resolvent set of an
operator T on H. Its complement o(T) = C\p(T) is the spectrum of T and the
spectral radius is the nonnegative number 7(T') = supcq(ry [A| = maxaeo (7 |Al-
The Gelfand-Beurling formula says that #(T") = lim,, ||T7||%. If #(T) = 0, then T is
called quasinilpotent. The numerical radius w(7") = supj; =1 |(Tx;x)| is a positive
number (0 < w(T) if T # O, defining another norm in B[H]) with w(T*T) = ||T||.
Spectral radius, numerical radius and the induced (uniform) norm are related as
follows: 0 < r(T) < w(T) < ||IT|| < 2w(T) for every T in B[H]. An operator T
is normaloid if r(T) = ||T||, and spectraloid if 7(T) = w(T). Every normaloid is
spectraloid and T is normaloid if and only if w(7T) = ||T'||. Among the normaloid are
the self-adjoint and, in particular, the nonnegative operators so that r(T*T) = || T||
and hence r(|T'|) = ||T||. An operator T is uniformly stable if lim,, ||7™| = 0, which
is precisely an operator T € B[H] with r(T") < 1. The point spectrum is the subset
op(T) ={A€C: N(AXI =T) #{0}} of o(T) consisting of all eigenvalues of T.

3. SurP PROPERTIES

Recall that 7(ST) = r(T'S) for every pair of operators T,.5 in B[H] but, in gen-
eral, 7(ST) £ r(S) r(T) [7, p.43,48]. However, r(ST) < [|ST|| < |IS]| |T|| for every
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T, S in B[H)]. In particular, r(ST) < ||T|| for every operator T' and every contraction
S. Thus supges r(ST) < ||T|| for every T € B[H] and every class of contractions S.

Definition 1. A class S of contractions in B[H] has the norm sup property if
sup r(ST) = [|T|
Ses

for every operator T' in B[H].

The purpose of the first part of this section is to investigate norm sup property
by assuming that the perturbing operator S belongs to some specific classes of
contractions (plain, strict, nonstrict and uniformly stable contractions; symmetries;
involutions; unitary operators; self-adjoint, normal and normaloid contractions;
partial isometries). In particular, by assuming that the perturbing operator S
belongs to the classes of finite-rank or compact contractions. No assumption is
imposed on the operator T.

Theorem 1. The classes of all nonstrict contractions and of all contractions in
B[H] have the norm sup property. In fact, more is true. For every T € B[H],

max r(ST) = max r(ST) = ||T|.

S]I=1 lsli<i
Moreover, the classes of all strict contractions and of all uniformly stable contrac-
tions in B[H] also have the norm sup property.

Proof. Nonstrict contractions are considered in part (a), contractions are considered
in part (b), strict contractions in part (c), and uniformly stable contractions in part
(d). Since the results are all trivial for T = O, take an arbitrary T # O in B[H).

(a) Put Sy = ||T||~'T* in B[H], which is a nonstrict contraction (||S;]| = 1), and get
IT|| = T~ r(T*T) = r(5:T). Thus the identity max | gj=1 r(ST) = ||T|| follows
at once because 7(ST) < ||T|| for every contraction S.

(b) According to (a) we get ||T|| = max | g/ = 7(ST) < max g <1 7(ST) < ||T.

(c) Take an arbitrary a € (0,1), put Sy = «||T||~'T*, which is a strict contraction
(ISall = @ < 1), and get 7(S,T) = a||T|| = r(T*T) = «||T||. Therefore,

IT] = sup «||T| = sup r(S.T) < sup r(ST) < ||T.
a€(0,1) a€(0,1) [|S|I<1
(d) This follows by items (b) and (c):
IT| = sup #(ST) < sup  r(ST) < swp r(ST) < |T|. O
Isl<1 r(S)<1,[ISlI<1 lIsl<1

There are smaller classes of contractions that also have the norm sup property.
For instance, the class of symmetries, a proper subclass of nonstrict contractions.
The argument of the proof below is similar to that in [4, Lemmas 4.11 and 4.12].

Proposition 1. The class of all symmetries has the norm sup property.
Proof. Take an arbitrary operator T in B[H] and an arbitrary unit vector z in H

(i.e.,  in H such that ||z|| = 1). If Tx = 0, then 0 = ||Tz|| € op(T) — i.e., || Tz is
an eigenvalue of T — and the trivial symmetry S, = I is such that
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[Tz|| <r(S.T).

Now suppose Tz # 0 and put y, = ||Tx||"*Tx in H, which also is a unit vector. If
Yy = v for some v in the unit circle (i.e., v € C with |y| = 1), then Tz = ~||Tz||x
so that v||Tz|| € op(T) and again, for the trivial symmetry S, = I,

|Tz|| < r(S.T).

If y, # v for all v in the unit circle, then put v, = [(yz ;)| N ye ; z) if (yz;2) #0
or v, = 1 otherwise, which lies in the unit circle. Set u, = y, — v, # 0, and
consider the unit vector e, = |lug|~'u, in H. Let P., in B[H] be the (rank-one)
orthogonal projection whose range is the one-dimensional space spanned by {e,}
(i.e., P,z = (z;e,)e, for every z € H), and consider the symmetry S, = I — 2P,
Set vy = Yo + Yor. Since v, = (Yo ;)| "y s 2) if (Y, ;1) # 0, we get v, L u, and
S0 v, L e;. This ensures that 25, y, = Sz Uy + Sz vy = vz — Uy = 27, x, and hence
Yo = Spys = | Tz||71S.Tx so that v, ||Tz| € op(S,T). Therefore S, is such that

(|Tz|| < r(S.T).

Outcome: For every unit vector x € H there is a symmetry S, € B[H] for which
|ITz|| < r(S,T). Thus (with S denoting the class of all symmetries from B[H]),

IT|| = sup ||[Tz| < sup 7(S:T) < sup r(ST) < ||T]- O
lel= lel=1 ses

Remark 1. The classes of all involutions, of all unitaries, of all self-adjoint non-
strict contractions, and of all self-adjoint contractions from B[H] also have the
norm sup property. Indeed, recall that a symmetry is precisely a unitary involu-
tion, which coincides with the class of all self-adjoint involutions, which in turn
coincides with the class of all self-adjoint unitary operators. Since symmetries have
the norm sup property, and since r(ST) < ||T|| for all contractions S, it follows
that every class of contractions that contains the symmetries also has the norm sup

property.

Remark 2. If the classes of all self-adjoint contractions and of all unitary operators
from B[H] have the norm sup property, then so has every class of contractions that
includes any of these classes. For instance, the classes of all normal nonstrict con-
tractions and of all normal contractions (and so any class of contractions including
them, such as the classes of all normaloid nonstrict contractions (r(S) =S| =1)
and of all normaloid contractions (r(S) = ||S]| < 1) also have the norm sup prop-
erty. Similarly, the classes of all isometries, and of all coisometries have the norm
sup property.

Since the class of isometries is included in the class of partial isometries (an
isometry is precisely an injective partial isometry), it follows that the class of all
partial isometries also has the norm sup property. However, for partial isometries
the norm sup property holds with “sup” strengthened to “max”.

Theorem 2. The class of all partial isometries from B[H)] has the norm sup prop-
erty. In fact, more is true. If S stands for the class of all partial isometries from
B[H)] then, for every T € B[H],

max r(ST) = ||T|.
SeS
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Proof. Take an arbitrary T' in B[H] and let T = W|T'| be its polar decomposition,
where W is a partial isometry and |T| = (T*T)?% is nonnegative, both in B[H].
Recall that |T| = W*T. Now put S = W* and also recall that W* is a partial
isometry whenever W is. Thus r(ST) = r(W*T) = r(|T|) = ||T|| and we get the
claimed result once partial isometries are contractions and r(ST) < ||T|| whenever
S is a contractions for every operator T. O

It is worth noticing that the norm max property, as in Theorems 1 and 2, was
recently investigated for Banach space operators in [9], where it was shown that if
X, are finite-dimensional normed spaces, then every operator on the Banach space
(@n Xn) ps P> 1, has the norm max property attained for a nonstrict contraction.

An operator is finite-rank if its range is finite-dimensional and compact if it maps
bounded sets into relatively compact sets. Since every finite-rank operator in B[H)
is compact, it follows that if finite-rank contractions have the norm sup property,
then so do the compact contractions (because plain contractions have it). The next
result deals with finite-rank (and compact) contractions. Note that the symmetry
I — 2P, in the proof of Proposition 1 is never finite-rank (P, is a finite-rank pro-
jection and the identity I is not even compact on an infinite-dimensional space).

Theorem 3. The class of all finite-rank contractions has the norm sup property,
and so does the class of all compact contractions.

Proof. Take any T in B[H] and an arbitrary unit vector = in H. If Tz = 0, then
for any finite-rank contraction (actually, for any operator) S, in B[H],

[Tz|| <r(S.T).

If Tx # 0, then put y, = ||Tx||"'Tx. If y, = vz for some ~ in the unit circle, then
set Sy = P, in B[H)], the orthogonal projection whose range is the one-dimensional
space spanned by {y, }, which is a rank-one nonnegative contraction. Thus S, Tz =
(T2 ;Ys)ys = Tx = || Tx||yes = v||Tz||x so that || Tz lies in op(S,T), and therefore

|Tz|| < r(S.T).

If y, # v for all v in the unit circle, then put v, = [(yz ;)| N ye ; z) if (y;2) #0
or v, = 1 otherwise, which lies in the unit circle. Set u, = vy, — v, # 0 and
Uy = Yo + Y27 # 0, and put e, = |Juz || tu, and fp = ||vg]| " vg. Let P., and Py, be
the orthogonal projections whose ranges are the one-dimensional spaces spanned
by {e;} and {f,}, respectively (P z = (z;ez)e, and Py z = (z; f) fo for every
z € H). Set S, = Py, — P, in B[H]. Since u; L v,, and so e, L f,, it follows that
P, and Py, are mutually orthogonal (i.e., P. P;, = P P., = O). This implies
that S2 = Py, + P.,, the orthogonal projection whose range is the two-dimensional
space spanned by {e,, f,}. However, S, itself is just a rank-two (self-adjoint, but
not nonnegative) contraction. Indeed, since P., and Py, are mutually orthogonal,
1Sez||? = |Pr, 2|2+ || Pe, 2||* < ||2||* for every z € H. Mutual orthogonality also
implies that 25,y, = Szu, + Szv, = vy — Uz = 2y, x, and hence v, x = Sy, =
|Tz|| =S, Tx so that v, ||Tz| € op(S.T). Therefore,

(|Tz|| < r(S.T).

Outcome: For every unit vector x in H there is a finite-rank contraction S, such
that ||Tz|| < r(S,T). Thus (with S denoting the class of all finite-rank contractions
from B[H]) it follows that
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T[] = sup ||Tz|| < sup r(S;T) < sup r(ST) < ||T]. O
lzl|= lzl|=1 ses

Norm sup property will be strengthened to numerical radius sup property below.
Now we assume that the perturbing operators S belong to the classes of orthogonal
projections, nonnegative, positive and strictly positive contractions. As before, no
assumption is imposed on the operator T.

Definition 2. A class S of contractions from B[H] has the numerical radius sup
property if

sup 7(ST) = w(T)
Ses

for every operator T in B[H).

The argument in parts (b) and (c) of the proof below are similar to those in the
infinite-dimensional versions of [4, Lemmas 4.4 and 4.6].

Proposition 2. The classes of all orthogonal projections, of all nonnegative con-
tractions, of all positive contractions, and of all strictly positive contractions have
the numerical radius sup property.

Proof. Take an arbitrary T in B[H]. We shall show in part (a) that w(T") < r(PT)
for all orthogonal projections P in B[H], in part (b) that w(T) <r(QT) for all
strictly positive contractions @) in B[H] and, in part (c), that »(QT) < w(T) for all
nonnegative contractions @ in B[H]. Thus

w(T) < sup r(PT) < sup r(QT) < w(T),
0<P=p2 0<Q<I

w(T) < sup r(QT) < sup r(QT) < sup r(QT) < w(T).
0=<Q<I 0<Q<I 0<Q<I
(a) Take an arbitrary unit vector z in H and consider the (unique) orthogonal
projection B, in B[H] whose range is the one-dimensional space spanned by {z}; that
is, By = (y;x)z for every y € H sothat BTz = (Tx;z)x. Thus (Tx;z) € op(RT)
—i.e., (T'z;x) is an eigenvalue of B,T — and therefore |(Tx; x)| < r(BT). Hence,
w(T) = sup [(Tz;z)| < sup r(BT) < sup r(PT).
lzl|=1 lzl|=1 O<P=p
(b) Consider the setup of item (a) where x is an arbitrary unit vector in H. Set
Q-(n) = 2B, + =1 in B[H] for each positive integer n. {Q,(n)} is a sequence

n+1 n+1
of strictly positive contractions (O < n+_1[ < Qz(n) < I) such that Q,(n) — P, in
the uniform topology (||Qz(n) — B < n%_l) and hence Q,(n)T — B,T. Since the

spectrum of BT is totally disconnected (BT is a rank-one operator because D,
is, and so o(R,T) is finite), it follows that B, T is a point of spectral continuity.
Then the above uniform convergence implies that 7(Q.(n)T) — r(BT) [7, p.57].
Therefore, since (T'z;z) € op(B.T),

[(Txz;x)| <r(BT)=1limr(Q.(n)T) < sup r(QT).
n 0<Q<I

Since this holds for all unit vectors x in H, we get

w(T) = sup [(Tz;z)] < sup r(QT).
lz)|=1 0=<Q<I
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(c) Take an arbitrary nonnegative contraction @ in B[H]. If r(QT) =0, then
r(QT) < w(T) trivially. Thus suppose 7(QT) # 0 and let R = Q% be its unique
nonnegative square root (which is again a contraction) so that r(QT) = r(R*T) =
r(RTR). Since the spectrum of any operator in B[H] is compact, there exists a A in
o(QT) such that |A\| = r(QT) = r(RTR). This A lies in the boundary of o(RTR),
and hence in the approximate point spectrum of RT R, which means that there is
a sequence {z,} of unit vectors in H such that (Al — RTR)x,, — 0. Therefore,

A=1lm(RTRx, ; Tn)

because |A — (RTRzp;xy,)| = [{(Ml — RTR)xy ;2n)| < ||(AM — RTR)x,|| (since
|zx| = 1), which in turn implies that

liminf [|[Rx,|| # 0

(reason: if liminf, ||Rz,| = 0, then lim,(RTRz, ;x,) = 0 so that A = 0, which
contradicts the assumption r(QT') # {0}). Thus 0 < |Rx,] for every n > ng, for
some integer ng. Since R is self-adjoint, || Rz, || "2 (RTRxy, ; x,) = (Tuy, ; u,) where
each u,, = ||[Rx,|| "Rz, also is a unit vector in H, for each n > ng. Hence, recalling
that ||Rz,|| <1 (because R is a contraction), we get

r(QT) =|A = im (RTRx, ; x,)| < limsup HRJ:,LH2 (Tt ; un)|

< limsup [(Tun sua)| < sup [(Ta;2)| = w(T). 0
n lz]|=1

Definition 3. A class S of contractions from B[H] has the spectral radius sup
property if

sup r(ST) =r(T)
Ses

for every operator T in B[H).

Let {T}' denote the commutant of an operator T' € B[H] (the unital subalgebra
of B[H] consisting of all operators that commute with T'). A direct consequence
of the Gelfand-Beurling formula for the spectral radius is that 7(ST) < r(S)r(T)
whenever S € {T'}’ (see e.g., [7, p.48]). Recall that a scalar operator is a multiple of
the identity (i.e., an operator S = af on H for some a € C). The class of all scalar
operators is a unital subalgebra of the commutant of every operator 7, and it is
trivially verified that the class of all scalar contractions from B[H] has the spectral
radius sup property. Indeed, for every T € B[H],

max 7(ST) = r(T).
S=al, |a|<1

Does there exist another class of contractions (not a subclass of scalar contractions)
that has the spectral radius sup property? Note that the class of all quasinilpotent
(in particular, of all nilpotent) operators from B[H] does not have any of the sup
properties of Definitions 1, 2 and 3. Indeed, if T'= I € B[H], then »(T) = w(T) =
IT)] =1 and r(ST) = r(S) = 0 for all quasinilpotent operator S € B[H)].
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4. UNIFORM STABILITY

Recall that an operator T in B[H] is uniformly stable if the power sequence {1}
converges uniformly to the null operator (i.e., if ||T"|| — 0). There is a myriad of
equivalent conditions for uniform stability (see e.g., [10] and the references therein);
among them, ||7"|| — 0 if and only if 7(T") < 1: an operator is uniformly stable if
an only if its spectrum is included in the open unit disc.

The theorems were proved in the previous section. Now we harvest the corollaries
by providing necessary and/or sufficient conditions for ST to be uniformly stable
when T is perturbed by operators S belonging to those classes of contractions
considered in Section 3.

Corollary 1. Take S, T in B[H)]. The following assertions are equivalent.

(a) ST is uniformly stable for every contraction S.

(b) ST is uniformly stable for every nonstrict contraction S.
(¢) ST is uniformly stable for every partial isometry S.
(

d) T is a strict contraction.

Proof. Let S be any class of contractions such that

max r(ST) = ||T|
Ses

for every operator T in B[H]. If T € B[H], then
r(ST)<1vsSeS = |T|<L
Therefore, according to Theorems 1 and 2, it follows that (a), (b), (c) and (d) are
pairwise equivalent. O
Corollary 2. Let S and T be operators in B[H]. The assertion
(d) T is a strict contraction
implies each of the assertions below.

(e) ST is uniformly stable for every S in any class of contractions that includes
all strict contractions.

(f) ST is uniformly stable for every S in any class of contractions that includes
all finite-rank contractions.

(g) ST is uniformly stable for every S in any class of contractions that includes
all symmetries.

Moreover, each of the above assertions implies that

(h) T is a contraction.

Proof. Let C be the class of all contractions in B[H]. Let S be any class of con-
tractions that includes a class Sy of contractions that has the norm sup property.
That is, So € S C C where ||T'|| = supges, r(ST). Since supgesr(ST) < |||,

sup r(ST) = sup r(ST) = ||T|
SeSo SeS

for every operator T' in B[H]. Thus take any T € B[H] and observe that
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IT||<1 & supr(ST)<1 = 7(ST)<1 VS€S = supr(ST)<1 & ||T|<1.
Ses SeSs

Therefore, (d) implies that ST is uniformly stable for every S in every class S that
includes Sy, which implies that ST is uniformly stable for every S in some class &
that includes Sp, which in turn implies (h). In particular, according to Theorems
1, 3 and Proposition 1, this holds whenever Sy is the class of all strict contractions,
the class of all symmetries, or the class of all finite-rank contractions. O

Corollary 3. Take S, T in B[H)]. The following assertions are equivalent.

(i) ST is uniformly stable for every strict contraction S.

(h) T is a contraction.

Proof. If |T|| <1 and ||S|| < 1, then #(ST) < [|ST|| < [ISIIITIl < IT|l <1 so that
(h) implies (i). By Corollary 2 (e) implies (h). In particular (i) implies (h). O
Corollary 4. Let S and T be operators in B[H)]. The assertion

(f) ST is uniformly stable for every S in any class of contractions that includes
all finite-rank contractions

implies that
(j) T is a proper contraction.
Proof. By Corollary 2 (f) implies (h). Thus T is a contraction (|7’ < 1) if (f) holds.

The outcome in the proof of Theorem 3 says that for every unit vector  in H there
is a finite-rank contraction S, in B[H] for which ||Tz|| < r(S,T). If the contraction

T is not proper, then there is a unit vector v in H such that 1 = ||lu|| = ||Tu||, and
so 1 <r(S,T) < 1, which is a contradiction: r(S,T) < 1 for every unit vector x if
(f) holds. Thus (j): T is a proper contraction. O

Corollary 5. Let S and T be operators in B[H)]. The assertion

(g) ST is uniformly stable for every S in any class of contractions that includes
all symmetries

implies that
(k) w(T) <1 and T is a proper contraction.

Proof. Suppose assertion (g) holds. Since the identity I is a symmetry, it follows
that r(T) < 1. Moreover, |T|| <1 because (g) implies (h) in Corollary 2. The
outcome in the proof of Proposition 1 reads as follow: for every unit vector x in
H there is a symmetry S, in B[H] for which ||Tz| < r(S,T). But r(S,T) < 1 for
every unit vector z if (g) holds. If the contraction T is not proper, then there is
a unit vector v in H such that 1 = |ju|| = ||Tu||, and hence 1 < r(S,T) < 1, which
is a contradiction. Thus T is a proper contraction. Recall that w(T) <1 (because
|7 <1). fw(T) =1, then w(T) = ||T|| = 1, which implies that T is normaloid so
that 7(T") = ||T|| = 1; another contradiction (since 7(T") < 1). Therefore, w(T) < 1.
Thus (g) implies (k). O

Remark 3. Assertion (k) says that T is either a strict contraction or a non-
normaloid nonstrict proper contraction. This is a necessary condition for uniform
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stability of multiplicative perturbation by symmetries. However, assertion (k) is
not sufficient. In other words, according to Corollary 5 the assertion

(1) ST is uniformly stable for every symmetry S

implies (k) but, as we shall see next, (k) does not imply (1). Indeed, we shall
exhibit a nonnormaloid nonstrict proper contraction 7" and a symmetry S such
that r(ST) =1. Take Ty = %(7} 7}) and Sp = (7(1) (1)) in B[C?], where Sy is a

2
symmetry, TO is a quasinilpotent nonstrict contraction (r(7p) =0 and ||Tp|| = 1),

and SpTp = (} i) is a nonnegative (thus normaloid) nonstrict contraction,
r(SoTo) = w(SoTo) = [[SoToll = [|Toll = 1.

Then w(Tp) # ||To|| (otherwise Ty would be normaloid) so that
0=r(Tp) < w(To) < w(SeTp) = ||To|| = 1.

ooy g To and S = @, So on H = £3(C?),

the Hilbert space made up of all square summable C2-valued sequences. Clearly, S
is a symmetry and ||T| = sup,,>; || 72570 1 i SoTo s
again a nonnegative nonstrict contraction,

r(ST) = w(ST) = [|ST|| = [|T]| = 1.
Claim: r(T) =0. In fact, take n>1 and A # 0 arbitrary. Since o (#Tg) = {0}
To) and so ()\I —

Now consider the direct sums T' = @)_°

we get A\ € p( To) has a bounded inverse, namely,

n+1 n+1

1 V2(ntDX 1 -1
()\I - n_JrlT ) = R (ntDAZ ( n 1 V3 (nt1)A + 1)

(since A= = 5;2 (O‘Il ;:1) whenever A = ﬂ(ajll ail) for any nonzero « and (3).

Observe that H()\I n+1T0) 1H < \/_(n:—Ll)\Mz (\/E(”Jr”W —|—2) p‘“ﬁgﬁ
Sup,,> H()\I n+1T0) 1” < oo. This implies that A\I — T = ., ()\I n+1T0)
also has a bounded inverse (\I — T)-1 = @, (A — n+1To) L Thus X € p(T),
and therefore T' is quasinilpotent: o(T) = {0}. Again, since T is a quasinilpotent
nonstrict contraction, w(T) # ||T|| so that

0=r(T) <w(T) <w(ST)=|T| =1.

and hence

Finally, we verify that T is a proper (nonstrict) contraction. Actually, for an
arbitrary nonzero z = {z,}52, in (% (C?),

1T = Z Iz To | < Z 1o nll* < Z 1 = [l

Then T satisfies (k) but (1) fails once r(ST) = 1 for the symmetry S.

What is behind the above example is the fact that the numerical radius w(ST)
of a product ST may be larger than the product w(T)|S||. (For more on numerical
radius properties see e.g., [6], [7] and [8].)

Remark 4. If w(T) < 1, then 7(ST) < 1 for every S in any class of contractions
that has the numerical radius sup property. Thus, by Proposition 2,

(m) w(T) <1
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implies that

(n) ST is uniformly stable for every orthogonal projection S,

(

o)
(p) ST is uniformly stable for every positive contraction S,
q)

(

and each of these, in turn, implies that
(r) w(T) <1 and T is uniformly stable.

Indeed, if any of (n) to (q) holds, then w(T) < 1 by Proposition 2 and, since the
identity is an orthogonal projection (thus nonnegative) as well as a strictly positive
(thus positive) contraction, it also follows that r(T") < 1. However, unlike the case
of Remark 3, the necessary condition (r) is sufficient for uniform stability of mul-
tiplicative perturbation by strictly positive contractions. This is a result from [2]
which we summarize below for completeness and for the reader’s convenience.

ST is uniformly stable for every nonnegative contraction S,

ST is uniformly stable for every strictly positive contraction S,

Corollary 6. [2] Take S, T in B[H]. The following assertions are equivalent.

(q) ST is uniformly stable for every strictly positive contraction S.
(r) w(T) <1 and T is uniformly stable.

Proof. [2] We saw in Remark 4 that (q) implies (r). Conversely, suppose (r) holds

for an operator T. If (q) fails for this 7} then there exists an operator @ such that

O <Q <Tandr(QT)=1. Consider the setup in the proof of Proposition 2, part

(¢), where R = Q7 (so that O < R < I), X € o(QT) with |\| = r(QT) = 1, and
(M — RTR)x, — 0 which implies (RTRx,;x,)— A

for a sequence {x,} of unit vectors in H (see proof of Proposition 2). Write

() I(A = T)Ran|l = IR [ANQ — I) + (M = RTR)]ay|
< IR (1T = Qznll + |(M = RTR)zy]|).
If w(T) <1, then [(T'z;z)| < ||z||* for every nonzero z in H, and so
{RTRwn;wn)| = (TRzy; Ran)| < ||Renl® <RI < 1.

Recall that [(RTRxy, ; x,)| — |A| = 1. Thus ||Rx,|| — 1 by above inequality, which
in turn implies that ||(I — @)z,|| — 0 because

I = @)zl = llzall? = 2Re(Qn, @) + [Qnll?
< 1= 2/|Ran|® + | RIP|| Ranl* < 1 - [|Ran|?.

Since ||(I — Q)zn|| — 0 and ||[(M — RTR)z,|| — 0, we get ||[(A] — T)Rxz,|| — 0 ac-
cording to (*). Set w, = ||Rzy| "' Rz,, which is again a unit vector in H. Since
|Rzy|| — 1, it also follows that ||(Al — T)u,|| — 0. This means that A lies in the
approximate point spectrum of 7, and hence A € o(T') so that 1 = |\ < »(T),
which is a contradiction (r(7T) < 1 if (r) holds). Thus (r) implies (q). O

We close the paper with a collection of necessary and sufficient conditions for
uniform stability of multiplicative perturbations by compact contractions. Recall
that an operator T in B[H] is strongly stable if the power sequence {T™} converges
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strongly to the null operator (i.e., | T"z|| — 0 for every x € H); and weakly stable if
{T™} converges weakly to the null operator (i.e., if (T"x;y) — 0 for every z,y € H
or, equivalently, (T"z;x) — 0 for every x € H since H is a complex Hilbert space).
Uniform stability implies strong stability, which implies weak stability. The next
result ensures that ST s uniformly stable for every compact contraction S if and
only if T is a proper contraction.

Corollary 7. Take S, T in B[H)]. The following assertions are equivalent.

s) ST is weakly stable for every compact contraction S.

t) ST is uniformly stable for every compact contraction S.

j) T is a proper contraction.

(
(
(u) Eigenvalues of ST lie in the open unit disc for every compact contraction S.
(
(v) ST is a proper contraction for every compact contraction S.

(

w) ST is a strict contraction for every compact contraction S.

Proof. Since the class of all compact operators from B[H] is a two-sided ideal of
B[H], it follows that ST is compact for every operator T" whenever S is compact.
However, the concepts of weak, strong and uniform stabilities coincide for a compact
operator on a complex Hilbert space (see e.g., [12, p.80]). Therefore ST is uniform
stable if and only if ST is weakly stable whenever S is compact contraction so
that (s) and (t) are equivalent. Moreover, o(ST)\{0} = op(ST)\{0} whenever ST
is compact (Fredholm Alternative) so that ¢(ST) C D if and only if op(ST) C D,
where D denotes the open unit disc (centered about the origin of the complex plane).
Hence (t) and (u) are equivalent. That (t) implies (j) is a particular case of Corollary
4 (which is a consequence of Theorem 3), since every finite-rank operator in B[H] is
compact. But if (j) holds, then ST is a proper contraction for every contraction S,
and hence the compact contraction ST is, in fact, a strict contraction: the concepts
of proper and strict contractions coincide for compact operators [13]. Thus (v) and
(w) are equivalent assertions, which are implied by (j). Finally, (w) implies (t) since
r(ST) < |57 O

Note that the above equivalent assertions imply their finite-rank counterpart,
which are still equivalent according to the same argument.
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