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A Putnam—Fuglede commutativity property
for Hilbert space operators

B.P. Duggal and C.S. Kubrusly

Abstract

Given Hilbert space operators A, B € B(H), define 04,5 and A4 p in B(B(H))
by d4,8(X) = AX — XB and A4,5(X) = AXB — X for each X € B(H). An oper-
ator A € B(H) satisfies the Putnam—Fuglede properties d, respectively A (notation:
A € PF(0), respectively A € PF(A)), if for every isometry V € B(H) for which the
equation d4,v+(X) = 0, respectively A4 v+(X) = 0, has a non-trivial solution
X € B(H), the solution X also satisfies 04+ v (X) = 0, respectively A 4+ v(X) = 0.
We prove that an operator A € B(H) is in PF(A) if and only if it is in PF(9).

1. Introduction

Given Hilbert space operators A,B € B(H), let 045 and Ay p € B(B(H))) de-
note, respectively, the generalized derivation 04 g(X) = AX — XB and the elemen-
tary operator Ay p(X) = AXB — X for each X € B(H). The classical Putnam-
Fuglede commutativity theorem says that if A, B are normal (see, e.g., [7, p.84], then
§15(0) C 52}73* (0). A similar result holds for A4 g [12, Theorem 5(i)]: if A, B are nor-
mal, then A;‘}B(O) C AZ}’ p+(0). These are symmetric versions of the Putnam-Fuglede
commutativity theorem, which, in general, fail to extend to classes of Hilbert space op-
erators more general than the class of normal operators. For instance, if A and B are
subnormal operators, then 04 g(X) = 0 for some X € B(H) does not always imply
da+p+(X) = 0. An asymmetric version of the commutativity theorems, wherein one
replaces the pair of operators {A, B} by the pair {A, B*}, is known to hold for A and B*
belonging to a number of classes of operators which properly contain the class of normal
operators. For example, [13, 2], if A is dominant and B* is hyponormal (i.e., if B is
cohyponormal), then 65 '5(0) C 52}73*(0).

We say that an operator A € B(H) satisfies the Putnam—Fuglede property § (resp.,
A), A € PF() (resp., A € PF(A)), if (either trivially A is unitary or) for every
isometry V € B(H) for which the equation d4y+(X) = 0 (resp., Aav-(X) = 0) has
a non-trivial solution X € B(H), the solution X also satisfies 64+ v (X) = 0 (resp.,
A+ v (X) =0). Property PF(0) gives rise to a characterization of contractions A with
C'y completely non-unitary (shortened, henceforth, to cnu) part [4] (also see [3]): A con-
traction A € B(H) has Cgo cnu part if and only if A € PF(9).
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A part of an operator A € B(H) is its restriction to a closed invariant subspace, and
we say that a part A|y of A is reducing if the (closed invariant) subspace M reduces
A. A well-known basic result for Hilbert space contractions reads as follows (see, e.g., [7,
Problem 4.10]). If A € B(H) is a contraction, then every unitary part of A (i.e., every re-
striction of A to a closed invariant subspace M of A such that A|ys is unitary) is reducing.
In other words, if the restriction of a Hilbert space contraction to an invariant subspace
is unitary, the subspace is reducing. This, however, fails for a general operator A € B(H).

The purpose of this note is to investigate Putnam-Fuglede properties (shortened
to PF-properties) for operators acting on Hilbert spaces. We prove that an operator
A € B(H) satisfies property PF(4) if and only if it satisfies PF(A). This, by [11,
Theorem 3.2], then implies that a power bounded operator A € PF(A) if and only if
A is the direct sum of a unitary with a Cy operator. For operators A € B(H) such
that A=(0) € A*~'(0), a necessary and sufficient condition for A € PF(§) is that the
unitary parts of A reduce A. The requirement that A=1(0) € A*(0) is however not
necessary (as follows from the fact that every contraction in B(H) with a C o cnu part
satisfies property PF(d)). We point out that a number of the more commonly considered
classes of Hilbert space operators, amongst them hyponormal, p-hyponormal, dominant
and k-x-paranormal operators, satisfy the PF-property.

2. Main Results

Given an operator X € 5271‘/* (0) for some operator A and isometry V in B(H), it is clear
that ran(X) is invariant under A and ker(X)* is invariant under V: We shall henceforth
define the operator A; in B(ranX) by A; = A|_—, the isometry V; in B(ker™X) by
Vi = Vl]ker(x)+ and the quasi-affinity X : ker(X)t — ranX by Xz = Xz for all
z € ker(X)+. Evidently,

X €6,5-(0) = X1 €04/ 4.(0).

We start with our main result, a theorem proving the equivalence of the property PF(4)
for an operator A € B(H) with the property PF(A) for A. The following result from [1]
is essential to our proof of this result.

Proposition 2.1 If A, B € B(H), then the following statements are pairwise equivalent.
(i) ran(A) C ran(B).
(ii) There is a > 0 such that AA* < u?BB*.
(iii) There is a bounded operator C such that A = BC.

Furthermore, if these conditions hold, then the operator C' may be chosen so that (a)
[|C]|? = inf{\ : AA* < ABB*}; (b) ker(A) = ker(C); (c) ran(C) C ker(B)L. (The opera-
tor C, under these restrictions, is unique.)

A particular case of Proposition 2.1 is obtained in the case in which AA* = BB*: In
this case there exists an isometry U such that A* = UB*. Another result which we shall
require in our proof of main result is the following.

Given operator A, B € B(H), if 4 g(X) = 0 = 4+ p~(X) = 0 for all X € B(H),
then d4 p(AX) =0 = 4+ p+(AX) =0, and hence (A*A—-AA*)X = X(B*B—BB*) =
AXX® — XX*A = X*XB - BX*X = 0. Again, if Ay p(X) =0 = Ape p-(X) =0
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for all X € B(H), then Ay p(AX) =0 = Aa+p+(AX)=0and Ay p(XB) =0=
A+ pr(XB) =0, and it follows that (A*A—AA*)XB* = A*X(B*B—BB*) = AXX*—
XX*A=X*XB— BX*X =0. We have the folowing result.

Lemma 2.2 Let A,B€ B(H). (i) If X € 5;}3(0) C 5;}73*(0), then ran(X) reduces A,

ker(X)* reduces B, and A|m and Blyer(x)+ are unitarily equivalent normal operators.

(i) If X € AZ}B(O) - A217B*(0), then ran(X) reduces A, ker(X) reduces B, and

A|m and (B|kcr(X)L)’1 are unitarily equivalent normal operators.

Proof. The proof is clear except perhaps for the fact that Blye,(x)s is invertible. To see

this, let A; = A|m7 Bi = Bler(x)+, and define the quasi-affinity X, : ker(X)* —

ran(X) by setting Xz = Xz for all z € ker(X)+. Let X; have the polar decomposition
X1 = U|X;|; then U is a unitary. Since ran(X) reduces A and ker(X)’ reduces B,
AXB = X implies (A;UB; — U)|X;| = 0 <= A;UB; = U. But then Bj is left
invertible and normal; hence B is invertible. O

The following version of the (asymmetic) Putnam-Fuglede theorem is well known
(and follows easily, for example, from the main result of [2]).

Lemma 2.3 AX = XB implies A*X — XB* =0 for unitary operators A and isome-
tries B* in B(H).

Theorem 2.4 A € PF(§) <= A € PF(Q).
Proof. (a) A € PF(A) = A € PF(J).

Let X € 6,.(0), V an isometry. Then A|X*[?A* = |X*|?, and it follows from an
application of Proposition 2.1 that there exists an isometry U € B(H) such that

| X*| =U|X"|A" = A X*|U" = | X7
This, since A € PF(A), implies that A*|X*|U = |X*|. An application of Lemma 2.2
now implies that ran(X) reduces A and 4; = A|m is unitary. Decompose A €

1
B(ran(X) @ ran(X) ) by A = A1 & Ay, V € B(H, & H.) into its unitary and cnu (=
completely non-unitary) parts by V =V, @ V,, and let X have the corresponding matrix
representation X = [X;;]?,_,. Then

A X =XV = AT X =XV

(apply Lemma 2.3 or the classical Putnam—Fuglede theorem [7]). If X135 # 0, then
Lemma 2.3 applied to A1 X715 = X712V implies A} X712 = X125V, and hence (by Lemma
2.2) ker(X12)* reduces V. and Velker(x,5)+ is unitary. This being a contradiction, X9 =
0. Considering now AXos; = X2V}, the equality Ag|X3;|245 = |X3;|? implies the
existence of an isometry W such that W|X3;|A5 = |X5,|. Equivalently:

Ao | X5 W |X21|<:>(A1@A2)< X3 O >(W &)= ( | X5, 0 )

Since A € PF(A), we conclude that A5|X5,|W = |X3,|. Consequently, ran(Xsg1) reduces

Ay and A2|m is unitary. But then A9 Xo; = Xo1 V" implies A5 X971 = X201V, and this

forces V. to have a unitary part. This contradiction implies Xo; = 0. Finally, we consider
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Ay X99 = X2oV¥. Arguing as above we have in this case that As| X3, |2 A5 = | X3y |? implies
the existence of an isometry E such that Aq|X5,|E* = | X3,],

0 0 0 0
A A " Efopl) = N ,
(s 2)(0 |X22|)< ) (o |X22|)

and hence (since A € PF(A)) A3X9s = XooV.. But then V. has a unitary part, a
contradiction. Hence X990 = 0, X = X1; 0, and

AX = XV = A1X11 = XHVJ — ATXll =XV, = A*X = XV,
i.e., A€ PF(6).

(b) PF(6) = PF(A).

The proof in this case is similar to the case above, so we shall be economical at times. Sup-
pose that AXV* = X for some isometry V € B(H) and X € B(H). Then A|X*[?A* =
|X*|2, and hence there exists an isometry U such that |X*|A* = U|X*| < A|X*| =
|X*|U*. Since A € PF(0), A*|X*| = |X*|U, and hence ran(X) reduces A and 4; =
A|W is unitary. Let (as above) A = A; @ Az, V =V, @ V. and let X have the cor-

ran

responding matrix representation X = [Xij]ij:l- Then: A1 X11 = X1V, = A7 X1 =
X1V A1 X0 = X192V} = A7 X9 = X2V, = V_ has a unitary part, implies X192 = 0.
Again, Ay Xo1 = X9,V implies Ao| X3, |2A% = | X3;|?, and hence there exists an isometry

W such that

(X514 = WIXg | == A|X5| = [ X5, |[W*

0 0 0 0
= A . = . W*eI).
<|X21| o) <|X21| o)< )

Since A € PF(9), it follows that A%|X3,| = | X5;|W, and hence that ran(Xz;) reduces A

and Aﬂm is unitary. Finally (an argument similar to the one above shows that)

Ay X99 = Xo5V, implies A X35|2 A% = | X3,|?, and this in turn implies ran(Xgo) reduces
Az and A2|m is unitary. Considering the equation (A2|W)Z = Z(Velker(x52)+ )
where Z : ker(Xg)t — ran(Xaz) is the quasiaffinity defined by setting Zz = Xaqz for
all x € H,, it follows that the cnu contraction V. has a unitary part: This contradiction

implies that X55 = 0. To complete the proof, consider now

X1 0 « w_ [ X121 0
(A1€9A2)(X21 0)(‘/“@‘/;)()(21 O)'
Since Ajand V,, are unitary, A1 X1V, = X117 = A7jX11V, = Xi11. The equation

A2X21Vu* = X9 — A2X21 = Xgqu; since A2|7ran(X21) is unitary, we have A;le =
X1 Vi = A3X21V, = Xo1. Hence AXV* = X implies

« w [ X110 _( X1 0
(A1®A2)(X21 O)(Vu@‘/c)_(X21 0)7
fe, A*XV =X. O

Recall that an operator A € B(H) is a Cy. operator if inf,>o||A"x|| = 0 for all z € H,
AeCy if infnz()HAnXH >0 for all 0 # x € H, AeCogif A*e Cy,AcC,if A* € C4,
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and A € Cppif A € C,.NC gforalla, 8 = 0,1. The operator A € B(H) is power bounded
if {A"}22, is a bounded sequence in B(H). Evidently, A is power bounded if and only
if A* is power bounded. Recall from [6] that every power bounded operator A € B(H)
A A

0 A
decomposition H = Hy ® Hso of H, such that A1 € Cy, and Agg € C..

Pagacz [11, Theorem 3.2] has proved that

has an upper triangular matrix representation A = > , with respect to some

a power bounded operator satisfies property PF(0) if and only if it is
the direct sum of a unitary with a Cy operator.

Along the same line we have the following corollaries of the previous theorem.

Corollary 2.5 A power bounded operator satisfies property PF(A) if and only if it is
the direct sum of a unitary with a C g operator.

Corollary 2.6 A contraction satisfies property PF(A) if and only if it has a Cy cnu
part.

Contractions belonging to a subclass S C B(H) may possess property PF(J) without
operators (not necessarily contraction operators) in S possessing property PF(J). Thus
paranormal contractions, i.e., contractions A € B(H) such that ||Az||? < [|A%z]| for all
unit vectors z in H, have C ¢ cnu part, and so satisfy PF(d) [9, 4, 5, 10]. However, there
exists a paranormal operator A € B(H) such that A does not satisfy property PF(4)
[11, Example 5.2]. An examination of [11, Example 5.2] shows that paranormal operator
A of the example has the property that the unitary subspaces (i.e., closed subspaces
of the operator such that its restriction to the subspace is unitary) of the operator are
not reducing. (In general, the eigenspaces — more generally, normal subspaces — of a
paranormal operator are not reducing.) If one assumes that 0 is a normal eigenvalue
(i.e., if ker(A) C ker(A*)) of the paranormal operator A, then a necessary and sufficient
condition for A € PF(J) is that the unitary subspaces of A reduce A.

Theorem 2.7 Let A € B(H). If the eigenspace corresponding to the eigenvalue 0 of
A reduces A, then a necessary and sufficient condition for A € PF(§) (hence also A €
PF(A)) is that the unitary subspaces of A reduce A.

Before going onto to proving the theorem we remark that the condition “the eigenspace
corresponding to the eigenvalue 0 of A reduces A” is in no way necessary for A € PF(9).
Consider for example a contraction A € B(H) with a C o cnu part, when it is seen that
A € PF(0) irrespective of whether 0 is a normal eigenvalues of A (or not).

Proof. To see the necessity of the condition, consider unitary operators U; and Us in
B<H1) such that U1X1 = X1U2 for some X1 S B(Hl) Let H = H1 @Hg, X = X1 ®0
in B(H), V* = Uj @ U* for some unilateral shift U € B(H3) and define the operator
Ae B(H) by A= %1 gl for some operators Ey € B(Hz,H1) and Ey € B(Ha).

2
Then AX — XV* = 0 = A*X — XV if and only if £y = 0. To prove sufficiency,
assume that AX = XV* X € B(H), for some isometry V € B(H). Define 4;, X;
and V; as before. Decompose A; into its normal and pure (i.e., completely non-normal)
parts by Ay = A1, ® Aip, Vi into its unitary and cnu parts by Vi = Vi, & Vie (so
that Vi, is a unilateral shift), and let X; have the corresponding matrix representation

X1 = [Xy]7 j=,. We prove that Xyy acts on the trivial space {0}. If X15 # 0, then the
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Putnam-Fuglede theorem for normal A;, and (purely) hyponormal Vi, [2, 13] applied
to A1, X12 — X12V1*c = 0 implies A’anlg — X19Vie = 0, and hence that ‘/10|kerl(X12)
is unitary, a contradiction. Hence X752 = 0. This since X is a quasi—affinity, implies
that Xao is injective. Since A1pX90 = X2oVi%, Ai, is injective and 0 € o,(V7h), we
must have X9 = 0. This, since X7 is a quasi-affinity, implies X5 acts on the trivial
space. Comnsequently, A1 = Ay, and V; = Vj,, which then leads to the implication
A1 Xq = X4V <= A7 X, = X1 V1. Hence A; is unitary. But then A; reduces A (so that
A=A @ Ay),and AX — XV* =0 implies A*X — XV =0. O

An interesting consequence of the above theorem is the following.

Corollary 2.8 An injective operator in B(H) such that its unitary parts are reducing
satisfies property PF(4).

Remark 2.9 (i). A number of the more commonly studied classes of Hilbert space
operator are known to satisfy the property that their normal subspaces are reducing.
Thus, if A € B(H) is either hyponormal (AA* < A*A) or p-hyponormal ((AA*)? <
(A*A)P, 0 < p < 1) or dominant (for every complex A there exists a scalar My > 0 such
that |(A—\)*|2 < My|A—\|?) or k-*-paranormal (||A*z||* < ||AFz|| for each unit vector
x € H and integer k > 1), then normal subspaces of A are reducing. For all such classes of
operators, A satisfies properties PF(6) and PF(A). Paranormal operators do not satisfy
this property, and hence properties PF(8) and PF(A) (in general) fail for paranormal
operators (cf. [11]).

(ii). If the cnu part A. of a contraction A € B(H) is not a C g contraction, then there
exists an isometry V- € B(H) and a non-trivial solution X € B(H) of da,v+(X) =0 such
that § 4+ v(X) # 0. To see this one argues as follows: If we let A = A, & A, with respect
to some decomposition H = H,, & H. of H, where A, is unitary, then A% ¢ Cp. implies
that A?A*™ converges strongly to a non-trivial operator 7' > 0 such that T%Az =V.T>
for some isometry V. [8, Proposition 1]. Define X, by X.x = Tzz for all z € H,. Then
AcX. = X V. Now set Iy, X, = X and 4,®V, = V. Then AX = XV* but
A*X # XV (for if then A, has a unitary part — a contradiction).
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