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Abstract

For a pair of Hilbert space operators A, B€ B(H), let 64,5 and A4, p in B(B(H))
be defined by d4,5(X) = AX— XBand Aa p(X)=AXB — X for each X € B(H).
An operator A € B(H) satisfies the Putnam—Fuglede properties é and A (notation:
A € PF(d) and A € PF(A)) if, for every isometry V € B(H) for which the equation
da,v=(X) =0or Aayv+(X) = 0 has a nontrivial solution X € B(H), the solution
X also satisfies d4+v (X) = 0, respectively Aa=y(X) = 0. It is proved that, if an
operator A € B(H) is hereditarily normaloid, satisfies (Dunford’s) condition (C),
and the contractive parts of A have a C.o completely nonunitary part, then A lies
in PF(6) "PF(A). This is applied to prove that a paranormal operator may not
satisfy condition (C) (and hence paranormal operators do not satisfy (Bishop’s)
property (3)). Also, as an application to the dynamics of power bounded operators
in B(H) (nontrivially) satisfying property PF(d), we prove that a number of classes
of Hilbert space operators, including classes consisting of dominant, paranormal
and *-paranormal operators, are not n-supercyclic.

1. Introduction

Let H be a Hilbert space, and let B(H) stand for the Banach algebra of all bounded
linear operators on H into itself. By a subspace we mean a closed linear manifold of H.
A part of an operator A € B(H) is a restriction of it to an invariant subspace. Let M
be a subspace of H. Suppose M is A-invariant (i.e., A(M) C M). We say that a part
Alp of A is contractive if A|rq is a contraction in B(M), and that A|a is reducing if
M reduces A (i.e., if M is a reducing subspace, which means that M and its orthogonal
complement M+ both are A-invariant). Recall [23, Problem 4.10]), if A € B(H) is a
contraction, then every unitary part of A (i.e., every restriction of A to an A-invariant
subspace M such that Al is unitary) is reducing. In other words, if the restriction
of a Hilbert space contraction to an invariant subspace is unitary, then the subspace is
reducing. This, however, fails for a general operator A € B(H).

In this paper we investigate Putnam-Fuglede commutativity properties (shortened to
PF-properties) for operators A € B(H) such that A is hereditarily normaloid (i.e., every
part of A is normaloid) and satisfies (Dunford’s) condition (C). Combining commuta-
tivity properties and (Dunford’s) condition (C') has been successfully explored before
(e.g., [10, Lemma 3.1], [13, Lemma 2.1] and [32, Theorem 2]). Here we prove that if
the contractive parts of A have C.o completely nonunitary part, then A € PF(6) NPF(A)
(where PF(6) and PF(A) are classes of operators having especial Putnam-Fuglede com-
mutativity properties that will be defined in the next section). As an application, we
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prove that if A is p-hyponormal (0 < p < 1), or w-hyponormal, or totally paranormal,
then A € PF(§) NPF(A). (We prove also that M-hyponormal, more generally domi-
nant, and *-paranormal operators satisfy property PF(§).) Furthermore, we prove that
a paranormal operator may not satisfy (Dunford’s) condition (C). Hence a paranormal
operator may not satisfy (Bishop’s) property (3) as well, pointing out thereby the need
for correction in, for instance, [36], [9], and [16].

A generalization of p-hyponormal, w-hyponormal, dominant and *-paranormal oper-
ators is obtained by considering their k-quasi variants [14]. (Thus, A € B(H) is k-quasi-
p-hyponormal for some integer k > 1 if A**(|A|?? — |A*|?P)A* > 0.) Tt is seen that these
generalizations also satisfy property PF(J). As a final application of our results, we con-
sider the dynamics of power bounded operators A € B(H) satisfying property PF(d). For
such operators it is seen that if the set {V € B(H):V isometric, 6Z}V*(O) # {0}} # o,
then neither of A and A* is finitely supercyclic.

2. PF Property

Let H and K stand for Hilbert spaces, B(H,K) for the Banach space of all bounded
linear transformation from H into X, and let B(H) and B(K) denote the Banach algebras
B(H,H) and B(K, K), respectively. Let the upper star * stand for the adjoint of a Hilbert
space operator. An operator A € B(H) has Putnam—Fuglede property § (property PF(d),
for short) if, whenever the equation

XA*=VX
holds for some isometry V € B(K) and some X € B(H,K), then
XA=V*"X.

That is, an operator A on H # {0} has property PF(¢) if either A* is not intertwined
to any isometry on any K # {0} or, if X # 0 intertwines A* to an isometry V', then the
same X also intertwines A to the coisometry V* From now on suppose H = K. For every
pair of operators A, B € B(H), consider the transformer d 4 5: B(H) — B(H), defined by

Sap5(X)=AX - XB

for every X € B(H), which is called the generalized derivation. By taking the adjoint
in both sides of the definition of property PF(4), it follows that, for the particular case
of H =K, an operator A has property PF(9), or A € PF(¢), if and only if, for every
isometry V' € B(H),

0av-(X)=0 = da-v(X)=0 (equivalently, ker(da v+) C ker(da-v)),

which can be written as,
04+ (0) € 0424 (0).
For each A, B € B(H) consider the transformer Ay g: B(H) — B(H), defined by
Aap(X)=AXB-X

for every X € B(H), which is called the elementary operator. Motivated by the preceding
definition one says that an operator A € B(H) satisfies the Putnam-Fuglede property A
(property PF(A), for short), or A € PF(A), if

Asv-(X)=0 = Ax(X)=0 (equivalently, ker(As ) C ker(Aa-yv)),
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for every isometry V € B(H), which again can be written as,
AL+ (0) € AL (0).

The classical Putnam-Fuglede commutativity theorem motivates the above notions of
Properties PF(§) and PF(A). Indeed, recall from the classical Putnam—Fuglede commu-
tativity theorem [23, p.84] that if A, B are normal, then 62’13 (0) C 52}73* (0). A similar
result holds for Ay p: if A, B are normal, then A%'5(0) € A7} 5.(0). This symmetric
version of the Putnam—Fuglede commutativity theorem has an aéymmetric version valid
for classes of Hilbert space operators more general than the class of normal operators.
Thus, [11], if A is dominant and B* is hyponormal (i.e., if B is cohyponormal), then
053'5(0) S 032 5. (0).

A operator A € B(H) is a contraction if ||A|| < 1. Every contraction can be decom-
posed into a direct sum A =U & C, where U is the unitary part of A and C is the
completely non-unitary (shortened, henceforth, to cnu) part of A (i.e., C' has no uni-
tary part itself). A contraction C' is of class C.q if its adjoint is strongly stable (i.e., if
|C*"z|| — 0 for every x € H). Property PF(4) gives rise to a characterization of contrac-
tions A with C.g completely non-unitary part [12, Lemma 1]: A contraction A € B(H)
has C.o cnu part if and only if A € PF(J) (see also [26, Theorem 1]). For a survey
along this line see [25]. Since A € PF () if and only if A € PF(A), whenever A is power
bounded [17, Theorem 2.3], it then follows that: A contraction A € B(H) has C.g cnu
part if and only if A € PF(5) NPF(A).

3. Property (0)

For every point v in the complex plane C let U, C C denote an arbitrary open neigh-
borhood of v. Let f denote an arbitrary H-valued analytic function on an open subset of
C. An operator A € B(H) is said to have the single valued extension property (SVEP, for
short) at a point p € C if for every U, C C the only solution f:U, — H to the equation

(A=X)f(A)=0 forevery AeU,

is the null function (f = 0). We say that A has SVEP if A has SVEP at every u € C.
Since every operator A has SVEP at every point of the resolvent set p(T') = C\o(A), it
follows that A has SVEP if it has SVEP at every point of the spectrum o(A). The local
resolvent set of an operator A € B(H) at a vector z € H is the set

pa(z) ={peC: (A= X)f(\) =z for every A € U, for some f:U, — H};

that is, pa(z) is the union of all open subsets U of C for which there is an analytic
function f:U — H which satisfies (A — X)f(\) = « for all A € U; the local spectrum
oa(x) of A at z is then the complement of local resolvent set: o4(z) = C\pa(x) (see,
e.g., [8]). Take an arbitrary closed subset F' of C. Consider the (not necessarily closed)
linear manifold of H,

XA(F)={z€H: oa(z) CF} ={x€H: Up =C\F C pa(x)},
called the local (analytic) spectral subspace of A associated to F', and set
Xa(F)={z € H: (A= N)f(A) =z for every A € Up = C\F for some f:Up — H},

called the glocal (analytic) spectral subspace of A associated to F' (glocal because the
analytic function in its definition is globally defined but dependant on each = € H), which
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is a hyperinvariant linear manifold of A such that X4 (F) C X 4(F). The operator A has
SVEP precisely when X4(F) = X4(F) for every closed set F' C C [28, Proposition 1]
— also see [30, p.220]. An operator A € B(H) is said to satisfy (Dunford’s) condition
(C) if X4(F) is closed for every closed set FF C C (cf. [18, p.2135, XVLI1]). If H =
XA (U,)+ X4 (Us) for every open covering {Uy, Us} of C, then A is said to satisfy property
() (or has the decomposition property (§)). The operator A is decomposable if A has
property (§) and X4(F) is closed for every closed set FF C C. In fact, an operator is
decomposable if and only if it has both property (§) and condition (C') [8, Proposition
1.3.8]. Let A(U, H) denote the collection of all H-valued analytic functions defined on
an open subset U of C. An operator A € B(H) has (Bishop’s) property (3) if, for every
open set U C C, the map

(A—()f(): A(U,H) — H is injective and has closed range.

Equivalently, an operator A € B('H) satisfies property () if, for every open set U C C and
every sequence { f,,} of functions in A(U, H), convergence of the sequence {(A — (-)) f»(-)}
to 0 in A(U, H), implies convergence to zero in A(U,H) for the sequence {f,}. In other
words, A € B(H) satisfies property (/) if, for every open set U € C and every sequence
of analytic functions f,, : U — H such that

(A= () fal) =0 as n—o0

locally uniformly on U (i.e., uniformly on compact subsets of U), then f,(-) — 0 as
n — oo locally uniformly on U [6, Definition 8] — actually, the original definition in [6]
was slightly different but equivalent). Properties (3) and (§) are dual of each other [2,
Theorems 19 and 21]: A satisfies property (3) if and only if A* satisfies property (4).
Property () implies condition (C'), which in turn implies SVEP [28, Proposition 1.2]:

property (8) C condition (C') € SVEP.

However, condition (C') does not imply property (3) [31]. Let oap(4) = {A € C: A— A
is not bounded below} C o(A) be the approximate point spectrum of A. If A satisfies
property (), then o4p(A) = o(A) [29, Corollary 1.7]. According to the above mentioned
duality, if A* satisfies (Bishop’s) property (3), then g4p(A4) = o(A).

4. When Condition (C) C PF(0)NPF(A)

Take an arbitrary A € B(H). The operator A is normaloid if its norm coincides with
its spectral radius, ||A|| = r(A), and A is hereditarily normaloid if every part of A is
normaloid. An operator A (not necessarily a contraction) is of class Co. if inf,,>¢ ||A™z|| =
0 for every z € H, of class C;. if inf,,>o ||[A™z|| > 0 for every 0 # = € H, of class C.o if A*
is of class Cp., and of class C.; if A* is of class C;.. An operator A is said to be of class
Cap if A is of class C,. N C.5 for any combination a, 5 =0,1. We say that a part 4|
of A is contractive if A|ps is a contraction, and that a contractive part A|ys of A has a
C'y completely nonunitary part (i.e., a C.g cnu part), if the cnu part of the contraction
Al is of class C.o (i.e., if the cnu part of A|as is a C.g-contraction). We shall need the
following results.

Lemma 4.1 Let A € B(H) be a contraction. The following assertions are equivalent.

(a) A has a C.o cnu part.
(b) A € PF(5).
(c) A e PF(A).
Thus, a contraction A € B(H) has a C.o cnu part if and only if A € PF(§) NPF(A).
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Proof. A contraction A has a C.g cnu part if and only if A € PF(§) [26, Theorem 1], and a
power bounded operator A is in PF(J) if and only if it is in PF(A) [17, Theorem 2.3]. O

Contractions belonging to a subclass S of B(H) may possess property PF(4) without
operators (not necessarily contraction operators) in S possessing property PF(d). Thus
paranormal contractions (i.e., contractions A € B(H) such that ||Az||? < ||A%z| for all
unit vectors « € H) have C.q cnu part [33, 12, 15, 34], and so belong to PF(J) by the
above lemma. For a general (not a contraction) paranormal operator A € B(H), if one
assumes that 0 is a normal eigenvalue of A (i.e., if ker(A) C ker(A*)), then a necessary
and sufficient condition for A € PF(4) is that the unitary subspaces of A reduce A [17].
Unlike the result in the preceding lemma, the following result does not require that A is
power bounded (i.e., it does not require that sup,,~q ||A™|| < 00).

Lemma 4.2 For every operator A € B(H), if A € PF(J), then A € PF(A).
Proof. See [17]. O

Lemma 4.3 If X € 52713(0) N 5_373*(0) for some A, B € B(H), then ran X reduces A,

ker X1 reduces B, and Al and Blye, x+ are unitarily equivalent normal operators.

Proof. This is a well known consequence of the original Putnam-Fuglede Theorem, where
the normality assumption is replaced with the condition X € 65 '5(0) N §,! 5.(0), which
always happens under normality assumption by the Putnam-Fuglede Theorem, and is
indeed enough to complete the proof. See e.g., [24, Corollary 6.50]. O

The following theorem is our main result.

Theorem 4.4 If an operator A € B(H) is such that

(i) A is hereditarily normaloid,
(ii) the contractive parts of A have a C.o cnu part,
(iii) A satisfies (Dunford’s) condition (C),

then A € PF(0) NPF(A).

Proof. In view of Lemma 4.2 it would suffice to prove that A € PF(J). Let X € 5;"1‘/* (0),
where V' € B(H) is an isometry. Decompose A into its normal and pure (i.e., completely
nonnormal) parts, A = A, ® A, € B(H, & H,), and V into its unitary and cnu (i.e.,
into its unitary and unilateral shift) parts V =V, @V, € B(H, ® H.), and let the
transformation X:H, ® H. — Hn ® H, have the corresponding matrix representation
X = [Xij]ijzo. Applying the Putnam-Fuglede Theorem for normal A, and unitary
Vu, it then follows that A, X731 — X711V, = 0 implies A% X1; — X711V, = 0. Considering
the equation A, X192 — X129V =0, the Putnam-Fuglede Theorem for normal A,, and
cohyponormal V* [11] implies that A X2 — X715V, =0 also. Suppose X152 # 0. Then
Lemma 4.3 implies that Ve[ie x,,+ is unitary (and unitarily equivalent to An |-
Since this contradicts the fact that V. is cnu, it follows that X5 = 0. This leaves us with
the equations
ApX21 - X21V: =0 and ApXQQ — XQQ‘/C* =0.

Suppose X21 # 0, and consider the following restrictions: A, = AMm in B(ran Xo1),
Vur = Viulker x4, + i B(keerglj‘)7 and YV = X21|kerX21L:kerX21J‘—> ran X2, which is a

quasiaffinity in B(ker X514 ran X19) (i.e. Y = Xo1|er X,,L is injective with dense range).
Observe that Vi1 = Vi|ier x,, - is unitary, and that

Xo1 €05 . (0) = Yedy v (0),
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where the unitary operator V., satisfies (decomposition) property (4) and A, satisfies
(Dunford’s) condition (C'), according to assumption (iii). (Recall that condition (C') is
inherited by restrictions to (closed) invariant subspaces [30, Proposition 1.2.21].) Apply-
ing [30, Proposition 3.7.11] we conclude that the spectrum o(A,1) = o(V,};) is contained
in the boundary of the unit disc in the complex plane, so that A,; has a unit spectral
radius: 7(Ap1) = 1. Assuming, as we did in (i), that A is hereditarily normaloid, A,
is normaloid. Consequently, A,; is a contraction. Since contractive parts of A have C.o
cnu parts by hypothesis (ii), it follows that A, € C.o. Now apply Lemma 4.1 to con-
clude Y € 5;:17\,;1 (0)nN 52517%1(0), and then Lemma 4.3 to conclude A, = Api|——<

ran Y
and V5| = V! |ker vy are unitarily equivalent normal (therefore, unitary and hence Ci1)
operators. This is a contradiction. Hence X9; = 0 (and so also Y= 0). Next we prove
that X22 =0. If XQQ 7& O7 then letting Ap2 = AHm, ‘/02 = ‘/C|ker Xoggt and letting
Z = X232\ xer x,,L: Ker X9 — ran Xuy be the restriction of X9 to ker X%, we have, as
before, that Z € 52227‘,:2 (0). Arguing as above, by using assumptions (i), (ii) and (iii), it
is seen that Ay is a contraction with a C.o cnu part, and Apy is unitarily equivalent to

*

the unitary V% (and so it must be of class C11), which is another contradiction. Hence
X599 = 0. Therefore, X = X711 $ 0, and so

(An &) Ap)(Xu &) 0) — (X11 © 0)(‘/2< (5] ‘/C*) =0
and
(A, © 4y) (X1 @0) — (X1 ®0) (Vu® Ve) =0,

which completes the proof. O

Remark 4.5 Recall that A € B(H) is k-paranormal (or k-+-paranormal) for some inte-
ger k> 1if ||Az||*+1 < ||AFH ]| ||z||* (or ||A*z||*+! < ||AFHz|||z||*) for every = € H.
Every k-x-paranormal operator is (k+ 1)-paranormal, and k-paranormal operators satisfy
the properties that: (a) They are normaloid; (b) every part of a k-paranormal opera-
tor is again k-paranormal; (¢) k-paranormal contractions have C.g cnu parts, and (d) if
AX = XV* for a k-paranormal operator A and unitary V, then ({||XV ™z} is a constant
sequence for every z € H, hence) ||[AXz| = || Xz| for every z € H [34, 15]. Thus, if A
is k-paranormal or k-#-paranormal and A, Y — YV, = 0 for some quasiaffinity ¥ and
unitary V1, then A, is isometric (and this forces Y = 0). Again, if A is k-*-paranormal,
then 0 is a normal eigenvalue of A (i.e., if 0 is in point spectrum o,(A) of A, then the
eigenspace corresponding to 0 is reducing). This, since 0 € 0,(V};) for a unilateral shift
Veo, implies that there is no quasiaffinity Z such that A2 — ZV}; = 0 for some pure
k-*-paranormal operator Ay and unilateral shift V,o. A similar argument does not work
for k-paranormal operators A for the reason that A=1(0) ¢ A*~1(0).

5. Paranormal Operators ¢ Condition (C)

Hyponormal operators A € B(H), AA* < A*A, and p-hyponormal operators A € B(H),
(AA*)P < (A*A)P, 0 < p < 1, are well known to be hereditarily normaloid and to satisfy
(Bishop’s) property (5). (Recall: Property (8) implies condition (C').) Furthermore,
they have C.¢p cnu contractive parts [12, 26, 34]. Hence hyponormal and p-hyponormal
operators A € PF(§) NPF(A). M-hyponormal operators A € B(H) (i.e., operator A for
which there exists a real M > 0 such that [(4 — AI)*|> < M|A — X|? for all complex
A) are not normaloid but satisfy the other two properties above. Dominant operators
A € B(H) (i.e., operators A such that for every complex A there exists a scalar My > 0
such that |(A— A)*|? < M,|A — AI|?) have C.q cnu parts and are known not to be
normaloid; it is not known if dominant operators satisfy condition (C). Clearly, M-
hyponormal operators are dominant operators, and it is known that dominant operators
A € PF(0) [11]. Hence A € PF(6) N PF(A) for M-hyponormal or dominant operators A.
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For an operator A € B(H) with polar decomposition A = U|A|, let A = |A|2U|A|? in
B('H) denote the (first) Aluthge transform of A. A € B(H) is said to be a w-hyponormal
operator if |A*| < |A| < |A|. Every w-hyponormal operator is paranormal [4], hence
hereditarily normaloid with C.g cnu contractive parts. Furthermore, w-hyponormal op-
erators satisfy property (3) [5]. Hence w-hyponormal operators satisfy the PF-property.

Summarizing the above, we have the following result.

Proposition 5.1 If A € B(H) is either p-hyponormal (0 < p < 1) or dominant or w-
hyponormal or k-x-paranormal (for some integer k > 1), then A € PF(§) NPF(A).

Proposition 5.1 fails for k-paranormal operators. Thus let H be a Hilbert space
with orthonormal basis {en }nez U {fn}nen, and let A € B(H) be the operator such that
A(ey) = eptq for all integers n € Z and A(f,,) = nen+Ynent1 for n € N, where the real
bounded sequences {z,} and {y,} satisfy z, = ypznt1 and yp41 = (xiﬂ + 1)y, for all
n € N. Then A is a paranormal (i.e., 1-paranormal) operator such that A ¢ PF(J) [35,
Example 5.2]. Combining this observation with Theorem 4.4 we have the next result.

Corollary 5.2 Paranormal operators do not necessarily satisfy condition (C).

Proof. Suppose to the contrary that paranormal operators have condition (C'). Then
the normaloid property of paranormal operators coupled with the facts that parts of a
paranormal operator are paranormal and a cnu paranormal contraction is of the class C.q
implies by Theorem 4.4 that A € PF(§) N PF(A). This is a contradiction. O

Recall, [19], that every subscalar Banach space operator satisfies property (3): Para-
normal operators are not subscalar. A paranormal operator A € B(H) is said to be
totally paranormal if ||(A — AI)z||> < ||(A — XI)?z| for every A € C and every unit vec-
tor « € H. Contractions belonging to a subclass S C B(H) may possess property PF(¢)
without operators (not necessarily contraction operators) in S possessing property PF(9).
Thus paranormal contractions; that is, contractions A € B(H) such that ||Az||* < || A2%z|
for every unit vector € H, have C.g cnu part, and so satisfy PF(J) [33, 12, 15, 34]. How-
ever, there exists a paranormal operator A € B(H) such that A does not satisfy property
PF(9) [35, Example 5.2]. An examination of [35, Example 5.2] shows that paranormal
operator A of the example has the property that the unitary subspaces (i.e., closed sub-
spaces of the operator such that its restriction to the subspace is unitary) of the operator
are not reducing. (In general, the eigenspaces — more generally, normal subspaces — of
a paranormal operator are not reducing.) If one assumes that 0 is a normal eigenvalue
(i.e., if ker A C ker A*) of the a paranormal operator A, then a necessary and sufficient
condition for A € PF () is that the unitary subspaces of A reduce A. Totally paranormal
operators satisfy condition (C') [27]. As a consequence we have the following result.

Proposition 5.3 If an A € B(H) is totally paranormal, then A € PF(§) N PF(A).

6. k-quasi-(P) operators

Pagacz [34, Proposition 4.1] proves that a cnu (p, k)-quasihyponormal contraction is
of class C.o. Here an A € B(H) is a (p, k)-quasihyponormal operator for some integer
kE>1 and a real number 0 < p < 1 if A*F(JA[?" — |A*|?P)A*F > 0. Tt is clear that, if a
(p, k)-quasihyponormal operator has dense range, then it is p-hyponormal. The restric-
tion of a (p, k)-quasihyponormal operator to a closed invariant subspace is again (p, k)-
quasihyponormal, and every (p, k)-quasihyponormal operator A € B(H) has an upper

triangular matrix representation A = (’%1 22) in B(ran Ak @ A*k_l(())) such that A; is

p-hyponormal and As is k-nilpotent [22]. Let (P) denote a class of operators in B(H)
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defined by a positivity condition. Generalizing the definition of (p, k)-quasihyponormal
operators, we say that an operator A in (P) is k-quasi-(P) for some integer k > 1 if
[14]: (i) Every restriction of A to a closed invariant subspace is again k-quasi-(P); (ii)

A has dense range implies A is in (P); (iii) A has an upper triangular matrix repre-
sentation A = (‘%1 ﬁz) with respect to some decomposition H = H; & He of H such
that 41 € (P)N B(H1) and Az € B(Hz) is k-nilpotent. If contractions in (P) satisfy the

PF-property, then also k-quasi-(P) contractions satisfy the PF-property .

Proposition 6.1 The k-quasi-(P) contraction A € B(H) has C.o cnu part if and only
if (the contraction) A1 € B(H1) has C.o cnu part.

Proof. If we let S = 6@17_/12(143), then

Atk Ang
n+k __ 1 1
A _< 0 0

and

147" (ATl < A" @ @ )] < (JAT] + 1STIDIAT 2l < (1+2%)[| A" 2|
for every x @y € H1 @ Ho. The proof follows. 0O

The following corollary is immediate from Proposition 6.1.

Corollary 6.2 The k-quasi-(P) contraction A € B(H) satisfies the PF-property if and
only if the contraction Ay € (P) N B(H1) satisfies the PF-property.

It is well known that the operator A = A; ® Ay € B(H; ® Hs) has SVEP if and
only if Ay and A have SVEP; SVEP for A; and A, implies SVEP for A = (‘¢ 4°) in
B(H1 @ H2), and then o(A) = 0(A1) Uo(Az2). Considering the operator A = A; & A,
in B(H1 @ Hz2) and a closed subset €2 of the complex plane, if A has SVEP then the local

spectral subspace X 4({2) satisfies

XA(QQO'(A» :XA({QQO'(A1>}U{QQO'(A2>})
= X4, (QN0c(A1)) D Xa,(2No(A42)) = X4,(Q) B Xa,(0).

Xa(2)

Thus X 4(Q)) is closed if and only if X 4, () is closed for i = 1, 2: Equivalently, A satisfies
condition (C) if and only if A; satisfy condition (C) for ¢ = 1,2. Evidently, nilpotent
operators satisfy condition (C).

Lemma 6.3 If a k-quasi-(P) operator A € B(H) satisfies condition (C), then A, € (P)
satisfies condition (C). Conversely, if Ay € (P) satisfies condition (C) and z¥|,(4 is
injective, then A €k-quasi-(P) satisfies condition (C).

Proof. That A; satisfies condition (C') is immediate from the fact that if A satisfies
condition (C'), then so does its restriction to an invariant subspace. Conversely, suppose
that A; satisfies condition (C). Recall from [1, Corollary 2.6] that if R and S are Banach
space operators such that RS and SR are well defined, then RS satisfies condition (C)
if and only if SR satisfies condition (C). Since

e (A )
O )

0

and since A; satisfies condition (C) implies A% satisfies condition (C) for every k > 1,

g (10 165, (As) AF 0
00 0 1 0 1
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satisfies condition (C') if and only if (fgf 0) satisfies condition (C). Thus, A satisfies

condition (C). The hypothesis that the polynomial 2* is injective on o(A) now implies
that A satisfies condition (C') [28, Remark 3.3.10]. O

Tt is well known that p-hyponormal operators (0 < p < 1), M-hyponormal operators
and w-hyponormal operators satisfy property (3), and hence also condition (C'). Thus, k-
quasi-p-hyponormal operators (equivalently, (p, k)-quasihyponormal operators), k-quasi-
M-hyponormal operators and k-quasi-w-hyponormal operators satisfy condition (C) (in-
deed, property (8)). M hyponormal operators are not normaloid; if A does not have a
dense range, then the operators belonging to neither of the classes k-quasi-p-hyponormal
and k-quasi-w-hyponormal are normaloid. Nevertheless we have the following. Let (P1)
denote the class of operators A € B(H) which are p-hyponormal or w-hyponormal or
M-hyponormal or dominant.

Theorem 6.4 Operators A € k-quasi (P1) satisfy the PF-property.

Proof. If we decompose A into its normal and pure parts, V into its unitary and cnu parts,
and let X € JZ}V*(O) have the (corresponding) matrix representation X = [X;;]7,_,,
then the argument of the proof of Theorem 4.4 shows that

A;Xll — Xlqu =0 and X12 =0.
Furthermore, in the notation of the proof of Theorem 4.4,
AplY =YV, =0= A7 - ZV},.

Since Y, Z are quasiaffinities and Vj;,V; have dense range, A,; and Apy have dense
range. By hypothesis, both A, and A, are k-quasi-(P1) operators; hence Ap; in (P1)
for i = 1,2. Applying Proposition 5.1 it now follows that Y = Z = 0; hence X = X1, &0
and X €6,! ,(0). O

General k-quasiparanormal operators are neither normaloid nor do they satisfy con-
dition (C); they do not satisfy the PF-property. It is straightforward to verify that
A € B(H) is *-paranormal if and only if A*2A4% —2 \AA* + X2 > 0 for all real \, and then
A € k-quasi-x-paranormal if and only if A*k(A*ZA2 —2M\AA* + 2% A% > 0. Theorem 6.4
extends to k-quasi-x-paranormal operators, as follows upon combining the argument of
the proof of Theorem 6.4 with the facts (observed in Remark 4.5) that A, is isometric
and 0 is a normal eigenvalue of a *-paranormal operator.

7. Dynamics of power bounded operators in PF(0)

For a Banach space operator T' € B(X) and a (nontrivial) vector x € X, the orbit of =
under 7 is the set Orb(T,z) = {x,Tz,T?%x,...}; the operator T is supercyclic, with a
supercyclic vector z, if the set of scalar multiples of the elements of Orb(T', x) is dense in
X. It is immediate that if 7' € B(X) has a supercyclic vector, then X is separable and
T has a dense range. Recall from [3, Theorem 2.2] that if T' € B(X) is a power bounded
operator (i.e., if sup, [|T"|| < co) which is supercyclic, then T € C5.. We prove below
that this observation describes in a natural way the non-supercyclicity of power bounded
operators in A € B(H) NPF(9).

For an operator A € B(H), let S(d4,v+) denote the set

S(6a,v+) ={V € B(H) : V isometric, 5;}‘/*(0) # {0} }.
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It is then immediate from X € 65, (0) implies X € 5237‘/(0) for an operator A in

B(H) N PF(8) that if S(64,v+) # @, then A is the direct sum of a unitary operator
and a (possibly trivial) operator. If the operator A € B(H) N PF(d) is power bounded,
then A = A, & A., where A, is unitary and A. is a (possibly trivial) C.q operator [35].

Theorem 7.1 If an operator A € B(H) NPF(S) is a power bounded operator such that
S(0a,v+) # @, then neither A nor A* is supercyclic.

Proof. Evidently, A is power bounded if and only if A* is power bounded. If A (resp.,
A*) is supercyclic, then A € Cy. (resp., A € C.¢) and so A can not have a Cy1, in particular
a unitary, part. Thus, if also A € PF(J), then A € Cy if A is supercyclic and A € C.q if
A* is supercyclic. But then the implication AX — XV* =0 = A*X — XV =0 holds
if and only if X =0 for all V € B(H). Thus, for an A € PF(J), A or A* is supercyclic
only if S(d4,v+) = @. Contrapositively, for an A € PF(J), A and A* are not supercyclic
whenever S(dav+) #@. O

Considering contractions A € B(H) which are either p-hyponormal (0 < p <1) or
w-hyponormal or dominant or paranormal or *-paranormal, it is trivially verified that
the direct sum of A with a unitary is again a contraction of the same class as A. Such
contractions A satisfy property PF(d) [12, 15, 25, 26, 33, 34, 35], and if A is not cnu,
then S(d4,v+) # @. Hence:

Operators A € B(H) which are either p-hyponormal or w-hyponormal or dominant
or paranormal or x-paranormal fail (in general) to be supercyclic.

Indeed more is true. An operator A € B(H) is n-finitely supercyclic for some in-
teger n > 1 if there is an n-dimensional subspace M of H such that Orb(A, M) =
U{M,A(M),A%(M),...} is dense in H. Recall from [20] that n-supercyclicity does not
imply (n — 1)-supercyclicity. We assume in the following theorem that our contractions
A € B(H) are nontrivial in the sense that their unitary part (whenever it exists) is not
an isometry on a finite dimensional subspace of H.

Theorem 7.2 If an operator A € B(H) N PF(5) is a contraction, then
(i) A n-supercyclic implies S(da,v+) = &,
(i) S(0a,v+) # @ implies neither of A and A* is n-supercyclic.

Proof. (i) Decomposing A into its unitary and cnu parts by A = A, @ A, it is seen that
A n-supercyclic implies A, is m-supercyclic for some m < n [7, Proposition 2.3]. Since
no unitary on an (m + 1)-dimensional Hilbert space can be m-supercyclic ([20, Theorem
4.9] and [7, Corollary 2.2]), we must have A = A.. This implies S(d4,v+) = @.

(i) If S(da,v+) # @, then the hypothesis A € PF(4) implies that A = A, & A, (with
respect to some decomposition H = H, @ H. of H), where A, is unitary and A. € C.g
is cnu. Trivially, the spectrum o(A4,) is a subset of (D), the boundary of the unit
disc in the complex plane. The operator A. being a contraction, ||A.|| < 1. If ||A.]| < 1
or 7(A.) < ||Ac]] = 1, then r(A.) <1, and so there exists a number p < 1 such that
o(A:) C{A:0 < [N < p}. If, instead, r(A.) = ||Ac|| = 1, then (A, is normaloid and) there
exists a A (in the peripheral spectrum of A. [21, p.225]) such that [A| = 1, asc(A. — A) <1
and dim(A* —X\)~1(0) > 0 [21, Proposition 54.2]. (Here, the ascent asc(A. — \) of A,
at X is the least nonnegative integer ¢ such that (A, — \)~+D(0) = (4. — A)~%(0).) If
x € H, is an eigenvector corresponding to A in the point spectrum of A%, then

I(Ae = Nz||* = [[Aca® — [|l=[|* < 0.
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Hence the eigenspace M corresponding to the eigenvalue A of A. reduces A. and A.|p
in unitary. This contradiction implies that 7(A) # 1. Conclusion: The spectrum

o(A)=0(A)Uo(Ac) S{X:p< N[ =1}U{X: [N <p<1}.

Hence A is not n-supercyclic [20, Proposition 4.5]. Since a similar argument works in
the case in which A € PF(d) and A* is n-supercyclic (observe that A € PF(J) implies
A* = Al @ A}), the proof follows. O

References

[1] P. Aiena and M. Gonzdlez, On the Dunford property (C) for linear operators RS and SR,
Integral Equations Operator Theory 70 (2011), 561-568. (Erratum: Ibid 71 (2011), 149-
150 — also Q. Zeng, H. Zhong, Common properties of bounded linear operators AC and
BA: Local spectral Theory, J. Math. Anal. Appl. to appear, 2014.)

[2] E. Albrecht and J. Eschmeier, Analytic functional models and local spectral theory, Proc.
London Math. Soc. 75 (1997), 323-348.

[3] S.I. Ansari and P.S. Bourdon, Some properties of cyclic operators, Acta Sci. Math. (Szeged)
63 (1997), 195-207.

[4] A. Aluthge and D. Wang, An operator inequality which implies paranormality, Math. In-
equal. Appl. 7 (1999), 113-119.

[5] C. Benhida and E. H. Zerouali, Local spectral properties of operator RS and SR, Integral
Equations Operator Theory 54 (2006), 1-8.

[6] E. Bishop, A duality theorem for an arbitrary operator, Pacific J. Math. 9 (1959), 379-397.

[7] P.S. Bourdon, N.S. Feldman and J.H. Shapiro, Some properties of N -supercyclic operators,
Studia Math. 165 (2004), 135-157.

[8] I. Colojoara and C. Foiag, Theory of generalized spectral operators, Cordon and Breach,
New York, 1968.

[9] M. Chd, S. Djordjevié and B. P. Duggal, Bishop’s property (3) and an elementary operator,
Hokkaido Math. J. 40 (2011), 337-356.

[10] M. Chd, S.V. Djordjevié, B.P. Duggal and T. Yamazaki, On an elementary operator with
w-hyponormal operator entries, Linear Algebra Appl. 433 (2010), 2070-2079.

[11] B.P. Duggal, On dominant operators, Archive der Math. 46 (1986), 353-359.

[12] B.P. Duggal, On characterising contractions with Cio pure part, Integral Equations Oper-
ator Theory 27 (1997), 314-323.

[13] B.P. Duggal and S. V. Djordjevi¢, Dunford’s property (C) and Weyl’s theorem, Integral
Equations Operator Theory 43 (2002), 290-297.

[14] B.P. Duggal, Upper triangular matriz operators with diagonal (T1,T2), To k-nilpotent,
Rend. Circ. Mat. Palermo 62 (2013), 215-226.

[15] B.P. Duggal and C.S. Kubrusly, Paranormal contractions have property PF, Far East J. of
Math. Sci. 14 (2004), 237-249.

[16] B.P. Duggal and C.S. Kubrusly, Quasi-similar k-paranormal operators, Oper. Matrices 5
(2011), 417-423.

[17] B.P. Duggal and C.S. Kubrusly, A Putnam—Fuglede commutativity property for Hilbert space
operators, Linear Algebra Appl. (2014), to appear.

[18] N. Dunford and J.T. Schwartz, Linear Operators — Part III: Spectral Operators, Inter-
science, New York, 1971.

[19] J. Eschmeier and M. Putinar, Bishop’s condition (3) and rich extensions of linear operators,
Indiana Univ. Math. J. 37 (1988), 325-348.

[20] N.S. Feldman, N -Supercyclic operators, Studia Math. 151 (2002), 141-159.



B.P. Duggal and C.S. Kubrusly PF and (B) Properties 12

[21] H.G. Heuser, Functional Analysis, Wiley, New York, 1982).
[22] L.H. Kim, On (p, k)-quasihyponormal operators, Math. Inequalities Appl. 7 (2004), 629-638.

[23] C.S. Kubrusly, Hilbert Space Operators: A Problem Solving Approach, Birkhauser, Boston,
2003.

[24] C.S. Kubrusly, The Elements of Operator Theory, Birkhduser/Springer, New York, 2011.

[25] C.S. Kubrusly, Contractions T for which A is a projection, Acta Sci. Math. (Szeged), to
appear 2014.

[26] C.S. Kubrusly and B.P. Duggal, Contractions with C.o direct summands, Adv. Math. Sci.
Appl. 11 (2001), 593-601.

[27] K.B. Laursen, Operators with finite ascent, Pacific J. Math. 152 (1992), 323-336.

[28] K.B. Laursen and M.M. Neumann, Asymptotic intertwining and spectral inclusions on Ba-
nach Spaces, Czechoslovak Math. J. 43 (1993), 483-497.

[29] K.B. Laursen and M.M. Neumann, Local spectral theory and spectral inclusions, Glasgow
Math. J 36 (1994), 331-343.

[30] K.B. Laursen and M.N. Neumann, Introduction to Local Spectral Theory, Clarendon Press,
Oxford (2000).

[31] T.L. Miller and V.G. Miller, An operator satisfying Dunford’s condition (C) bul without
Bishop’s property (8), Glasgow Math. J 40 (1998), 421-430.

[32] T.L. Miller and V.G. Miller, The single-valued extension property for sums and products of
commuting operators, Czechoslovak Math. J 52 (2002), 635-642.

3] K. Okubo, The unitary part of paranormal operators, Hokkaido Math. J. 6 (1977), 273—-275.
[34] P. Pagacz, On Wold-type decomposition, Linear Algebra Appl. 436 (2012), 3065-3071.

5] P. Pagacz, The Putnam—Fuglede property for paranormal and x-paranormal operators,
Opuscula Math. 33 (2013), 565-574.

[36] K. Tanahashi and A. Uchiyama, Bishop’s property (8) for paranormal operators, Oper.
Matrices 3 (2009), 517-524.

B.P. Duggal, 8 Redwood Grove, Northfield Avenue, Ealing, London W5 4SZ, United
Kingdom. e-mail: bpduggal@yahoo.co.uk

C.S. Kubrusly, Catholic University of Rio de Janeiro, 22453-900, Rio de Janeiro, RJ,
Brazil e-mail: carlos@ele.puc-rio.br

Rendiconti del Circolo Matematico di Palermo (2015) 64, 167-170

Erratum/Addendum

to the paper “PF property and property (5) for paranormal operators”,
Rend. Circ. Mat. Palermo 63 (2014), 129-140

By B.P. DuGcGAL AND C.S. KUBRUSLY

The proof of Theorem 7.2(ii) — If A € B(H)NPF(J) is a contraction, then S(da,v+) #
@ implies A is not n-supercyclic — of our paper of the title is incomplete (in that it fails
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to consider the case a(A% — \) = 0). We provide here additional argument to complete
the proof, and prove an analogue of the result for weakly supercyclic operators.

We follow the notation and terminology of the paper of the title. Thus B(H) denotes
the algebra of bounded linear operators on an infinite dimensional complex Hilbert space,
da,8 € B(B(H)) denotes the generalized derivation 64 5(X) = AX — XB, and an
operator A € B(H) satisfies the Putnam—Fuglede property 6, denoted A € PF(4), if
whenever the equation AX = XV* holds for some isometry V and operator X € B(H),
then also A*X = XV. An operator A € B(H) is n-supercyclic for some n € N if H has
an n-dimensional subspace M with dense orbit Orbys(A) = |J,,cy A™M; a 1-supercyclic
operator is supercyclic, and we say that A is weakly supercyclic if there exists a vector
x € H, with M the corresponding one dimensional subspace generated by x, such that
Orbyps(A) is weakly dense (i.e., dense in the weak topology) in H. It is clear that if
an operator A € B(H) is n-supercyclic or weakly supercyclic, then H is separable (see
[1, 2, 5, 7] for more information).

For an operator A € B(H), let S(da,v+) = {V € B(H) : V isometric, 5271‘/*(0) #
{0}}, and let Sp(da,v+) denote the set of those isometries V' € B(H) for which there
exists an X € B(H) with dense range such that d4 v+(X) = 0. Clearly, if A € B(H) is
a contraction, S(d4,v+) # @ and A € PF(J), then A is the direct sum of a unitary with
some (possibly trivial) operator, and if also Sp(da,v+) # @, then A is unitary.

Theorem 7.2 Let A be a contraction in B(H) N PF(J).
(a) If A is n-supercyclic, then S(0a,v-) = @.

(b) If A is weakly supercyclic, then either
(bl) S(5A7V*) =4, or
(be) S(da,v+) # @ and A is a unitary (hence Sp(da,v+) # D).

Proof. If S(04,v+) # @ and A € PF(J), then there exists a decomposition H = H, & H.
of H such that A = Aly, & Alp, = Ay ® A, where A, is unitary and A, is completely
non-unitary (indeed, a Cy contraction). (The component A. may be absent if there
exists an X € B(H) with dense range satisfying d4,v+(X) = 0.) Evidently, in such
a case, 0(A4,) is contained in the boundary 0D of the unit disc in the complex plane,
[|Ac|| <1 and the spectral radius r(A.) of A. satisfies r(A.) < 1.

The proof here is similar to that of [3, Theorem 7.2(ii)]. However, as earlier stated, the
argument of the proof of [3, Theorem 7.2(ii)] is incomplete: We provide below the missing
argument and reproduce here a complete proof for the reader’s convenience.

(a) Suppose a contraction A € B(H) N PF(4) is n-supercyclic and S(d4,v+) # &. Then,
as observed above, A = A, ® A, where A, is unitary, 0(A4,) C {\: |\ =1} = 9D (= the
boundary of the unit disc D in the complex plane). If r(A.) < 1, then there exists a real
number p < 1 such that o(A.) C {A:|A] < p}. Consequently, o(A) CODU{A: |\ < p},
and this by [5, Proposition 4.5] is a contradiction. Hence r(A.) = 1, which then implies
that A. is normaloid. Letting o,(A:) = {\ € 0(A.) : |A| = r(A.)} denote the peripheral
spectrum of A., [6, Proposition 54.2] implies that asc(4. — A) < 1 and B(4. — A) =
dim(He/(Ac—N)(He)) > 0 for all A € o (A.). Since a(AX—X) = dim(A—X) < B(A.—N\),
either (A% — X) = 0 or a(A% — ) > 0. We prove that neither of these alternatives is
feasible, leading us to conclude that our hypothesis r(A.) = 1 is not possible. Recall the
(easily proved) fact that the eigenvalues p of a contraction in B(H) such that |u| =1 are

normal (i.e., the corresponding eigenspace is reducing). Hence, if a(A7 — ) > 0, then
A, has a unitary direct summand — a contradiction. Consequently, a(A% —X) = 0. We
claim that A ¢ isoo(A%). If A € isoo(A%), then H. = P(H.) ® (I — P)(H.), where P is

the Riesz projection associated with A [6, Theorem 49.1]. Evidently, dim(P(H,.)) = oo
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(for if dim(P(H.)) < oo, then X is a pole, hence an eigenvalue). Since the adjoint of an
n-supercyclic operator can not have an infinite dimensional invariant subspace [2], we
have a contradiction. This leaves us with the case A € 0,(A%) and X ¢ isoo(A%). Then,
given ¢ > 0, every e-neighbourhood of X contains an element of the point spectrum of
A%. Since the adjoint of an n-supercyclic operator has at most (counting multiplicity) n
eigenvalues [2], again we have a contradiction. Hence a(A% — ) # 0, which leads to yet
another contradiction. Therefore, if a contraction A € B(H) N PF(0) is n-supercyclic,
then S(d4,v+) = @. (Equivalently, if S(04,v+) # @, then a contraction A € B(H)NPF(J)
is not n-supercyclic.)

(b) The proof here is similar to that of the first part, and we shall use freely the relevant
parts of the argument above in our proof below. Suppose that A € B(H) is (w-s) (short
for “weakly supercyclic”). If S(d4,v+) # @, and A € PF(0), then A = A, ® A.. Since the
compression of a (w-s) operator to the orthogonal complement of an invariant subspace of
the operator is again (w-s), A. is a (w-s) contraction. If r(A.) < 1, then there exists a real
number 0 < p < 1 such that o(A) CID U {\: |\| < p}, and this by [1, Lemma 3.3] is a
contradiction. We prove next that r(A.) # 1, which then leads us to conclude that either
our hypothesis S(d4,v+) # @ is false or A, acts on the trivial space 0 (and hence A is a
unitary). Suppose then that r(A.) = 1. Then, see above, a(A* —X) > 0 for a A € 0 (A.)
implies A, has a unitary summand, and hence we must have that a(A% — X) = 0. If
ox(A:) C isoo(A.), then, upon letting P denote the Riesz projection associated with
the spectral set o (A.), we have H. = P(H.) ® (I — P)(H.). Recall now the fact that
an invariant subspace of a (w-s) operator has co-dimension 1 or co. (This is a simple
consequence of the fact that if 7' is a (w-s) operator on a finite dimensional space, then
it is supercyclic, and there are no supercyclic operators on a finite dimensional space of
dimension greater than one.) Hence dim((I — P)(H,)) is either 1 or co. In either case
o(Acl(1-p).)) # @ and [u| < 1 for every p € o(Ac|(7—p)(n.)). Since this contradicts
[1, Lemma 3.3] for A., we must have that there is a A € 0,(A.) such that X ¢ isoo(A.).
But then X ¢ isoo,(AZ), and hence, given € > 0, every e-neighbourhood of A contains an
element of the point spectrum of A%*. Hence (0, (A.) = @ forcing thereby that) r(A.) # 1,
and o(A) C 0D U{X : |A| < p} for some positive number p < 1. But then (in view of
[1, Lemma 3.3]) we must have either that A is (w-s) and S(d4,v+) = @ or A, acts on
the trivial space 0 (so that o(A.) = @, A is unitary and 64 v+([) = 0, where V is the
isometry V = A*). O

Let Ay g € B(B(H)) denote the elementary operator Ay g(X) = AXB — X. Then
an operator A € B('H) is said to satisfy property PF(A) if whenever the equation AXV*—
X = 0 holds for some isometry V and operator X € B(H), then A*XV* — X = 0. It
is known, [4, Theorem 2.4], that A € PF(§) <= A € PF(A). If we let S(A4v+) =
{V € B(H) : V isometric, A3, (0) # {0}}, then S(Aav+) # @ <= S(dav+) # @
furthermore, there exists an isometry V and an operator X with dense range satisfying
da,v+(X) = 0 if and only if there exists an isometry W and an operator Y with dense
range such that AYW* =Y (see the proof [4, Theorem 2.4]. Hence:

Corollary 1 Let A be a contraction in B(H) NPF(A).
(a) If S(Aa,v+) # @, then A is not n-supercyclic.
(b) If A is weakly supercyclic, then either
(b1) S(Aav+) =2, or,
(be) S(Aay+) # @ and A is unitary.
Contractions belonging to a subclass & C B(H) may possess property PF(d) (hence

also property PF(A)) without operators (not necessarily contraction operators) in S
possessing the property [4]. However, since an A € B(H) is n-supercyclic (or, weakly
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supercyclic) implies rA is n-supercyclic (resp., weakly supercyclic) for every non-zero
scalar r, the theorem (above) has an analogue for (general) operators in B(H).

Corollary 2 Let A € B(H) be such that the contraction operator B = ﬁA € PF(9).
(a) If S(0B,v+) # @, then A is not n-supercyclic.
(b) If A is weakly supercyclic, then either

(b1) S(Op,v-) =2, or,

(be) S(dp,v+) # @ and A is a scalar multiple of a unitary operator.
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