PERTURBATION OF BANACH SPACE OPERATORS WITH A COMPLEMENTED RANGE

B.P. DUGGAL AND C.S. KUBRUSLY

ABSTRACT. Let $\mathcal{C}[\mathcal{X}]$ be any class of operators on a Banach space \mathcal{X} , and let $Holo^{-1}(\mathcal{C})$ denote the class of operators A for which there exists a holomorphic function f on a neighbourhood \mathcal{N} of the spectrum $\sigma(A)$ of A such that f is non-constant on connected components of \mathcal{N} and f(A) lies in \mathcal{C} . Let $\mathcal{R}[\mathcal{X}]$ denote the class of Riesz operators in $\mathcal{B}[\mathcal{X}]$. This paper considers perturbation of operators $A \in \Phi_+(\mathcal{X}) \cup \Phi_-(\mathcal{X})$ (the class of all upper or lower [semi] Fredholm operators) by commuting operators in $B \in Holo^{-1}(\mathcal{R}[\mathcal{X}])$. We prove (amongst other results) that if $\pi_B(B) = \prod_{i=1}^m (B - \mu_i)$ is Riesz, then there exist decompositions $\mathcal{X} = \bigoplus_{i=1}^m \mathcal{X}_i$ and $B = \bigoplus_{i=1}^m B|_{\mathcal{X}_i} = \bigoplus_{i=1}^m B_i$ such that: (i) If $\lambda \neq 0$, then $\pi_B(A, \lambda) = \prod_{i=1}^m (A - \lambda \mu_i)^{\alpha_i} \in \Phi_+(\mathcal{X})$ (resp., $\in \Phi_-(\mathcal{X})$) if and only if $A - \lambda B_0 - \lambda \mu_i \in \Phi_+(\mathcal{X})$ (resp., $\in \Phi_-(\mathcal{X})$), and (ii) (case $\lambda = 0$) $A \in \Phi_+(\mathcal{X})$ (resp., $\in \Phi_-(\mathcal{X})$) if and only if $A - B_0 \in \Phi_+(\mathcal{X})$ (resp., $\in \Phi_-(\mathcal{X})$), where $B_0 = \bigoplus_{i=1}^m (B_i - \mu_i)$; (iii) if $\pi_B(A, \lambda) \in \Phi_+(\mathcal{X})$ (resp., $\in \Phi_-(\mathcal{X})$) for some $\lambda \neq 0$, then $A - \lambda B \in \Phi_+(\mathcal{X})$ (resp., $\in \Phi_-(\mathcal{X})$).

0. Introduction

Given an infinite-dimensional complex Banach space \mathcal{X} , let $\mathcal{B}[\mathcal{X}]$ denote the algebra of operators (equivalently, bounded linear transformations) of \mathcal{X} into itself. Let $A^{-1}(0)$ and $A(\mathcal{X})$ denote, respectively, the null space and the range of an operator $A \in \mathcal{B}[\mathcal{X}]$. The operator A has an inner generalized inverse if there exists an operator $B \in \mathcal{B}[\mathcal{X}]$ such that ABA = A. It is easily seen that if B is an inner generalized inverse of A, then AB is a projection from \mathcal{X} onto $A(\mathcal{X})$ and $I_{\mathcal{X}} - BA$ is a projection from \mathcal{X} onto $A^{-1}(0)$: Indeed, A is inner regular (i.e., A has an inner generalized inverse) if and only if $A(\mathcal{X})$ and $A^{-1}(0)$ are complemented (in \mathcal{X}). The study of inner regular operators has a long and rich history, and there is a large body of information available on inner regular operators in the extant literature (see, for example, [7]). An important class of inner regular Banach space operators is that of operators $A \in \mathcal{B}[\mathcal{X}]$ which are either left or right Fredholm. Here we say that $A \in$ $\mathcal{B}[\mathcal{X}]$ is left Fredholm, $A \in \Phi_{\ell}(\mathcal{X})$ (resp., right Fredholm, $A \in \Phi_{r}(\mathcal{X})$), if $A \in \Phi_{+}(\mathcal{X})$ and $\mathcal{R}(A)$ is complemented (resp., $A \in \Phi_{-}(\mathcal{X})$ and $A^{-1}(0)$ is complemented), $\Phi_+(\mathcal{X}) = \{A \in \mathcal{B}[\mathcal{X}] : A(\mathcal{X}) \text{ is closed and } \dim(A^{-1}(0)) < \infty\}$ is the class of upper semi-Fredholm operators and $\Phi_{-}(\mathcal{X}) = \{A \in \mathcal{B}[\mathcal{X}] : \dim(\mathcal{X}/A(\mathcal{X})) < \infty\}$ is the class of lower semi-Fredholm operators (see, e.g.; [12]).

The problem of the perturbation of inner regular operators by compact operators is of some interest, and has been considered in the not too distant past. Thus if an $A \in \mathcal{B}[\mathcal{X}]$ is left Fredholm (or right Fredholm), and $S \in \mathcal{B}[\mathcal{X}]$ is a compact operator, then A+S is left Fredholm (resp., right Fredholm) [10, 5]. This result is in a way the best possible: If $A \in \mathcal{B}[\mathcal{X}, \mathcal{Y}]$ for Banach spaces \mathcal{X} and \mathcal{Y} , $A^{-1}(0)$ is infinite dimensional and complemented in \mathcal{X} , $A(\mathcal{X})$ is closed, complemented and of infinite codimension in \mathcal{Y} , then the closure of $(A+S)(\mathcal{X})$ is complemented in \mathcal{Y} for every

Date: October, 2016.

²⁰¹⁰ Mathematics Subject Classification. Primary 47A53; Secondary 47A10.

Keywords. Left and right Fredholm operators, perturbation, Riesz operator, inner inverse.

compact $S \in \mathcal{B}[\mathcal{X}, \mathcal{Y}]$ only if $A(\mathcal{X})$ has a complementary subspace isomorphic to a Hilbert space [10, Theorem 3].

For an operator $A \in \mathcal{B}[\mathcal{X}]$, let $\mathcal{H}(\sigma(A))$ denote the set of functions f which are holomorphic on a neighbourhood \mathcal{N} of the spectrum $\sigma(A)$ of A, and let $\mathcal{H}_c(\sigma(A)) = \{f \in \mathcal{H}(\sigma(A)) : f \text{ is non-constant on the connected components of } \mathcal{N}\}$. Let $\mathcal{K}[\mathcal{X}]$ denote the ideal of compact operators, and let $\mathcal{R}[\mathcal{X}]$ denote the class of Riesz operators (i.e., operators whose nonzero translates are Fredholm). The operator A is holomorphically compact (resp., Riesz), $A \in Holo^{-1}(\mathcal{K}[\mathcal{X}])$ (resp., $A \in Holo^{-1}(\mathcal{R}[\mathcal{X}])$), if there exists an $f \in \mathcal{H}_c(\sigma(A))$ such that f(A) is compact (resp., Riesz).

This paper considers perturbation of operators in $\Phi_{\pm}(\mathcal{X}) = \Phi_{+}(\mathcal{X}) \cup \Phi_{-}(\mathcal{X})$ by commuting operators in $(Holo^{-1}(\mathcal{K}[\mathcal{X}]))$, more generally, $Holo^{-1}(\mathcal{R}[\mathcal{X}])$. It is known that if $B \in Holo^{-1}(\mathcal{K}[\mathcal{X}])$ (resp., $B \in Holo^{-1}(\mathcal{R}[\mathcal{X}])$), then there exists a polynomial $\pi_B(z) = \prod_{i=1}^m (z - \mu_i)^{\alpha_i}$ for some complex numbers μ_i and positive integers α_i (resp., $\pi_B(z) = \prod_{i=1}^m (z_i - \mu_i)$), which is the minimal polynomial $\pi_B(.)$ of B, such that $\pi_B(B)$ is compact (resp., Riesz).

Let $\Phi_{\times}(\mathcal{X})$ denote either of $\Phi_{+}(\mathcal{X})$ and $\Phi_{-}(\mathcal{X})$. We prove (a more general version of the result) that if $\pi_B(A) \in \Phi_{\times}(\mathcal{X})$, if [A,B] = AB - BA = 0 (or, more generally, [A,B] is in the "perturbation class" $\operatorname{Ptrb}(\Phi_{\times}(\mathcal{X}))$ of $\Phi_{\times}(\mathcal{X})$) and $\pi_B(B)$ is Riesz, then $A - B \in \Phi_{\times}(\mathcal{X})$. The hypothesis $B \in \operatorname{Holo}^{-1}(\mathcal{K}[\mathcal{X}])$ (or, $B \in \operatorname{Holo}^{-1}(\mathcal{R}[\mathcal{X}])$) enforces a decomposition $\mathcal{X} = \bigoplus_{i=1}^m \mathcal{X}_i$ of \mathcal{X} such that $B = \bigoplus_{i=1}^m B_i = \bigoplus_{i=1}^m B_i X_i$ with $\bigoplus_{i=1}^m (B_i - \mu_i)^{\alpha_i}$ compact (resp., $\bigoplus_{i=1}^m (B_i - \mu_i)$ Riesz). Let $B_0 = \bigoplus_{i=1}^m (B_i - \mu_i)$, where m and μ_i are as above. It is proved that if [A,B] = 0 and $B \in \operatorname{Holo}^{-1}(\mathcal{R}[\mathcal{X}])$, then: (a) $\pi_B(A,\lambda) = \prod_{i=1}^m (A - \lambda \mu_i) \in \Phi_{\times}(\mathcal{X})$ for a complex number $\lambda \neq 0$ if and only if $A - \lambda(B_0 - \mu_i) \in \Phi_{\times}(\mathcal{X})$, and $A \in \Phi_{\times}(\mathcal{X})$ if and only if $A - B_0 \in \Phi_{\times}(\mathcal{X})$; (b) $\pi_B(A,\lambda) \in \Phi_{\times}(\mathcal{X})$ for some $\lambda \neq 0$ implies $A - \lambda B \in \Phi_{\times}(\mathcal{X})$. The case of operator A such $\pi_B(A,\lambda)$ has SVEP, the single-valued extension property, or essential SVEP, at 0 is also considered.

1. Auxiliary Results

Let $\operatorname{Inv}_{\ell}(\mathcal{X})$ ($\operatorname{Inv}_{r}(\mathcal{X})$) denote the class of operators $A \in \mathcal{B}[\mathcal{X}]$ which are left invertible (resp., right invertible). Let \mathcal{T} denote the Calkin homomorphism \mathcal{T} : $\mathcal{B}[\mathcal{X}] \to \mathcal{B}[\mathcal{X}]/\mathcal{K}[\mathcal{X}]$. Then $A \in \mathcal{K}[\mathcal{X}]$ if and only if $\mathcal{T}(A) = 0$, $A \in \mathcal{R}[\mathcal{X}]$ if and only if $\mathcal{T}(A)$ is a quasinilpotent operator, and an $A \in \mathcal{B}[\mathcal{X}]$ is in $\Phi_{\ell}(\mathcal{X})$ (resp., $\Phi_{r}(\mathcal{X})$) if and only if $\mathcal{T}(A) \in \operatorname{Inv}_{\ell}(\mathcal{X})$ (resp., $\mathcal{T}(A) \in \operatorname{Inv}_{r}(\mathcal{X})$). Let $B \in Holo^{-1}(\mathcal{K}[\mathcal{X}])$. Then there exists a function $f \in \mathcal{H}_c(\sigma(B))$ such that $f(B) \in \mathcal{K}[\mathcal{X}]$, and hence such that $\mathcal{T}(f(B)) = f(\mathcal{T}(B)) = 0$. Since f(z) has at best a finite number of zeros, there exists a polynomial p(.) such that $f(\mathcal{T}(B)) = p(\mathcal{T}(B))g(\mathcal{T}(B)) = 0$, where the (holomorphic on $\sigma(B)$) function g satisfies the property that $g(z) \neq$ 0 on $\sigma(B)$. But then $p(\mathcal{T}(B)) = 0$, and hence there exists a monic irreducible polynomial, the minimal polynomial of B, which divides every other polynomial q(z) such that $q(\mathcal{T}(B)) = 0$. If we let $\pi_B(z) = \prod_{i=1}^m (z - \mu_i)^{\alpha_i}$ denote the minimal polynomial of B, then $\pi_B(B) \in \mathcal{K}[\mathcal{X}]$. In the case in which $B \in Holo^{-1}(\mathcal{R}[\mathcal{X}])$, so that $f(B) \in \mathcal{R}[\mathcal{X}]$ for some $f \in \mathcal{H}_c(\sigma(B))$, $f(\mathcal{T}(B))$ is a quasinilpotent such that $f(\mathcal{T}(B)) = p(\mathcal{T}(B))g(\mathcal{T}(B))$ for some polynomial p(.) such that $p(\mathcal{T}(B))$ is quasinily otent and the function g(.) is invertible. Once again there exists a minimal polynomial $\pi_B(.)$ of B such that $\pi_B(B) \in \mathcal{R}[\mathcal{X}]$. We have ([13, 11, 16]):

Proposition 1.1. The following conditions are equivalent for operators $B \in \mathcal{B}[\mathcal{X}]$:

- (i) $B \in Holo^{-1}(\mathcal{K}[\mathcal{X}])$ (resp., $B \in Holo^{-1}(\mathcal{R}[\mathcal{X}])$).
- (ii) B is polynomially compact (resp., polynomially Riesz).
- (iii) There exists a monic irreducible polynomial $\pi_B(z) = \prod_{i=1}^m (z \mu_i)^{\alpha_i}$ (resp., $\pi_B(z) = \prod_{i=1}^m (z \mu_i)$), the minimal polynomial of B, such that $\pi_B(B)$ is compact (resp., Riesz).

If $f(B) \in \mathcal{K}[\mathcal{X}] \cup \mathcal{R}[\mathcal{X}]$ is such that (the Fredholm essential spectrum) $\sigma_e(f(B)) \neq \emptyset$, then (it follows from the considerations above that) there exists a finite subset $\{\mu_1, \mu_2, \cdots, \mu_m\}$ of the set of complex numbers \mathbb{C} such that $f(\mu_i) = 0$ for all $1 \leq i \leq m$, and there exist disjoint countable subsets $S_i = \{\mu_{i_n}\} \subset \mathbb{C}$ such that μ_{i_n} converges to $\mu_i \in \mathcal{S}_i$ and $S_1 \cup S_2 \cup \cdots \cup S_m = \sigma(B)$. (Here either of the sets S_i may consist just of the singleton μ_i , and then the quasinilpotent part $H_0(B - \mu_i) = \{x \in \mathcal{X} : \lim_{n \to \infty} ||(B - \mu_i)^n x||^{\frac{1}{n}} = 0\}$ of $B - \mu_i$ is infinite dimensional.) Letting P_i denote the spectral projection associated with the spectral set S_i we then obtain spectral subspaces \mathcal{X}_i of \mathcal{X} and operators $B_i = B|_{\mathcal{X}_i}$ such that $\mathcal{X} = \bigoplus_{i=1}^m \mathcal{X}_i$, $B = \bigoplus_{i=1}^m B_i$ and $\sigma_e(B_i) = \{\mu_i\}$. Furthermore, each $(B_i - \mu_i)^{\alpha_i}$ is compact in the case in which $B \in Holo^{-1}(\mathcal{K}[\mathcal{X}])$, and (since, for an operator $E \in \mathcal{B}[\mathcal{X}]$, $E^{\alpha_i} \in \mathcal{R}[\mathcal{X}]$ if and only if $E \in \mathcal{R}[\mathcal{X}]$) each $B_i - \mu_i$ is Riesz in the case in which $B \in Holo^{-1}(\mathcal{R}[\mathcal{X}])$. We have:

Proposition 1.2. [8, 16] If $B \in Holo^{-1}(\mathcal{K}[\mathcal{X}])$ (resp., $B \in Holo^{-1}(\mathcal{R}[\mathcal{X}])$), then there exists a finite subset $\{\mu_1, \mu_2, \cdots \mu_m\} \subset \mathbb{C}$, a subset $\{\alpha_1, \alpha_2, \cdots, \alpha_m\}$ of positive integers, a decomposition $\mathcal{X} = \bigoplus_{i=1}^m \mathcal{X}_i$ of \mathcal{X} into closed B-invariant subspaces and a decomposition $B = \bigoplus_{i=1}^m B_i$ of B such that each $(B_i - \mu_i)^{\alpha_i}$ is compact (resp., each $B_i - \mu_i$ is Riesz).

2. Riesz Perturbations

Given operators $A, B \in \mathcal{B}[\mathcal{X}]$, let $\delta_{A,B} \in \mathcal{B}[\mathcal{B}[\mathcal{X}]]$ denote the generalized derivation $\delta_{A,B}(X) = AX - XB$, and let $\delta_{A,B}^n(X) = \delta_{A,B}^{n-1}(\delta_{A,B}(X))$. The operators A, B are said to be *quasinilpotent equivalent* if

$$\lim_{n \to \infty} ||\delta_{A,B}^n(I)||^{\frac{1}{n}} = \lim_{n \to \infty} ||\delta_{B,A}^n(I)||^{\frac{1}{n}} = 0.$$

The following proposition is well known (see [14, Proposition 3.4.11], [6, Theorem 3.1]).

Proposition 2.1. If A, B are quasinilpotent equivalent operators, then $\sigma_{\times}(A) = \sigma_{\times}(B)$, where σ_{\times} stands for either of the left spectrum, the right spectrum, the approximate point spectrum σ_a , the surjectivity spectrum σ_s and the spectrum σ .

We assume in the following that if an operator $B \in \mathcal{B}[\mathcal{X}]$ is such that $B \in Holo^{-1}(\mathcal{K}[\mathcal{X}])$ or $Holo^{-1}(\mathcal{R}[\mathcal{X}])$, then it has the minimal polynomial function of Proposition 1.1, the Banach space \mathcal{X} and the operator B have the decompositions $X = \bigoplus_{i=1}^m \mathcal{X}_i$ and $B = \bigoplus_{i=1}^m B_i$ of Proposition 1.2. The operator $B_0 \in \mathcal{B}[\mathcal{X}]$ shall henceforth be defined by $B_0 = \bigoplus_{i=1}^m (B_i - \mu_i)$, where the scalars μ_i are as defined in Proposition 1.1. Let $\operatorname{Inv}_{\times}(\mathcal{X})$ denote operators $A \in \mathcal{B}[\mathcal{X}]$ which are either bounded below or surjective.

Given operators $A, B \in \mathcal{B}[\mathcal{X}]$, let [A, B] denote the commutator [A, B] = AB - BA of A and B. If $\Phi_{\times}(\mathcal{X})$ denotes either of $\Phi_{\ell}(\mathcal{X})$ or $\Phi_{r}(\mathcal{X})$ or $\Phi_{\pm}(\mathcal{X}) = \Phi_{+}(\mathcal{X}) \cup \Phi_{r}(\mathcal{X})$

 $\Phi_{-}(\mathcal{X})$, then the perturbation class of $\Phi_{\times}(\mathcal{X})$, $Ptrb(\Phi_{\times}(\mathcal{X}))$, is the closed two sided ideal

$$Ptrb(\Phi_{\times}(\mathcal{X})) = \{ A \in \mathcal{B}[\mathcal{X}] : A + B \in \Phi_{\times}(\mathcal{X}) \text{ for every } B \in \Phi_{\times}(\mathcal{X}) \}.$$

It is seen that

$$\operatorname{Ptrb}(\Phi_{\ell}(\mathcal{X})) = \operatorname{Ptrb}(\Phi_{r}(\mathcal{X})) = \operatorname{Ptrb}(\Phi(\mathcal{X})) \supseteq \operatorname{Ptrb}(\Phi_{+}(\mathcal{X})) \cup \operatorname{Ptrb}(\Phi_{-}(\mathcal{X})).$$

Let \mathcal{T}_p denote the homomorphism

$$\mathcal{T}_p: \mathcal{B}[\mathcal{X}] \to \mathcal{B}[\mathcal{X}]/\mathrm{Ptrb}(\Phi_{\times}(\mathcal{X}))$$

which is effected by the natural projection of the algebra $\mathcal{B}[\mathcal{X}]$ into the quotient algebra $\mathcal{B}[\mathcal{X}]/\mathrm{Ptrb}(\Phi_{\times}(\mathcal{X}))$. It is then clear that $[A,B]=AB-BA\in\mathrm{Ptrb}(\Phi_{\times}(\mathcal{X}))$ if and only if $\mathcal{T}_p(AB-BA)=\mathcal{T}_p(A)\mathcal{T}_p(B)-\mathcal{T}_p(B)\mathcal{T}_p(A)=0$; furthermore, if the function $f\in\mathrm{Holo}^{-1}(\sigma(A)\cup\sigma(B))$, in particular if f is a polynomial, then $[A,B]\in\mathrm{Ptrb}(\Phi_{\times}(\mathcal{X}))$ implies $f(A)f(B)-f(B)f(A)\in\mathrm{Ptrb}(\Phi_{\times}(\mathcal{X}))$, and hence $\mathcal{T}_p(f(A)f(B)-f(B)f(A))=0$.

Theorem 2.1. Let $A, B \in \mathcal{B}[\mathcal{X}]$ be such that $B \in Holo^{-1}(\mathcal{R}[\mathcal{X}])$.

- (a) If $\pi_B(A,\lambda) = \prod_{i=1}^m (A \lambda \mu_i) \in \Phi_{\times}(\mathcal{X})$ for some complex number λ and $[A,B] \in \text{Ptrb}(\Phi_{\times}(\mathcal{X}))$, then $A \lambda B \in \Phi_{\times}(\mathcal{X})$ if $\lambda \neq 0$, and $A B_0 \in \Phi_{\times}(\mathcal{X})$ whenever $\lambda = 0$.
- (b) Suppose that [A, B] = 0.
- (i) If $\lambda \neq 0$, then $\pi_B(A,\lambda) = \prod_{i=1}^m (A \lambda \mu_i)^{\alpha_i} \in \Phi_{\times}(\mathcal{X})$ if and only if $A \lambda B_0 \lambda \mu_i \in \Phi_{\times}(\mathcal{X})$.
 - (ii) (Case $\lambda = 0$) $A \in \Phi_{\times}(\mathcal{X})$ if and only if $A B_0 \in \Phi_{\times}(\mathcal{X})$.
- (c) If $\lambda \neq 0$, [A, B] = 0 and $\pi_B(A, \lambda) \in \Phi_{\times}(\mathcal{X})$, then $A \lambda B \in \Phi_{\times}(\mathcal{X})$.

Proof. (a) Define the operators D, E and F by

$$D = E - F$$
, $E = \pi_B(A, \lambda)$ if $\lambda \neq 0$ and $E = A^m$ if $\lambda = 0$, $F = \lambda^m \pi_B(B)$ if $\lambda \neq 0$ and $F = B_0^m$ if $\lambda = 0$.

Then $F \in \mathcal{R}[\mathcal{X}]$, and the hypothesis that $[A, B] \in \text{Ptrb}\Phi_{\times}(\mathcal{X})$ implies

$$\mathcal{T}_n[E,F] = \mathcal{T}_n(E)\mathcal{T}_n(F) - \mathcal{T}_n(F)\mathcal{T}_n(E) = 0.$$

The operator $\mathcal{T}_p(F)$ being quasinilpotent, we have

$$\delta_{\mathcal{T}_p(D),\mathcal{T}_p(E)}^n(I) = \delta_{\mathcal{T}_p(D),\mathcal{T}_p(E)}^{n-1}((-1)\mathcal{T}_p(F))$$

= \cdots = (-1)^n \mathcal{T}_p(F)^n = \cdots = (-1)^n \delta_{\mathcal{T}_p(E),\mathcal{T}_p(D)}^n(I),

and hence $\mathcal{T}_p(D)$ and $\mathcal{T}_p(E)$ are quasinilpotent equivalent. Since $E \in \Phi_{\times}(\mathcal{X})$,

$$\mathcal{T}_p(E) \in \operatorname{Inv}_{\times}(\mathcal{X}) \Longleftrightarrow \mathcal{T}_p(D) \in \operatorname{Inv}_{\times}(\mathcal{X}).$$

Again, since

$$\mathcal{T}_p(D) = (\mathcal{T}_p(A) - \mathcal{T}_p(B))g(\mathcal{T}_p(A), \mathcal{T}_p(B), \lambda)$$

= $g(\mathcal{T}_p(A), \mathcal{T}_p(B), \lambda)(\mathcal{T}_p(A) - \lambda \mathcal{T}_p(B))$ if $\lambda \neq 0$,

and

$$\mathcal{T}_{p}(D) = \mathcal{T}_{p}(A)^{m} - \mathcal{T}_{p}(B_{0})^{m} = (\mathcal{T}_{p}(A) - \mathcal{T}_{p}(B_{0}))g_{1}(\mathcal{T}_{p}(A), \mathcal{T}_{p}(B), \lambda)$$

= $g_{1}(\mathcal{T}_{p}(A), \mathcal{T}_{p}(B), \lambda)(\mathcal{T}_{p}(A) - \mathcal{T}_{p}(B_{0}))$ if $\lambda = 0$,

it follows that

$$\mathcal{T}_p(A) - \lambda \mathcal{T}_p(B) \in \operatorname{Inv}_{\times}(\mathcal{X}) \text{ if } \lambda \neq 0 \text{ and}$$

$$\mathcal{T}_p(A) - \mathcal{T}_p(B_0) \in \operatorname{Inv}_{\times}(\mathcal{X}) \text{ if } \lambda = 0.$$

Since

$$A - \lambda B$$
 (resp., $A - B_0$) $\in \Phi_+(\mathcal{X})$ if and only if $\mathcal{T}_p(A) - \lambda \mathcal{T}_p(B)$ (resp., $\mathcal{T}_p(A) - \mathcal{T}_p(B_0)$) is bounded below and $A - \lambda B$ (resp., $A - B_0$) $\in \Phi_-(\mathcal{X})$ if and only if $\mathcal{T}_p(A) - \lambda \mathcal{T}_p(B)$ (resp., $\mathcal{T}_p(A) - \mathcal{T}_p(B_0)$) is surjective,

the proof follows.

(b) The proof at places is similar to the one above, so we shall at points be brief. Let $\mathcal{T}: \mathcal{B}[\mathcal{X}] \to \mathcal{B}[\mathcal{X}]/\mathcal{K}[\mathcal{X}]$ denote the *Calkin homomorphism*. Suppose that [A, B] = 0. Letting $B = \bigoplus_{i=1}^m B_i$ with respect to the decomposition $\mathcal{X} = \bigoplus_{i=1}^m \mathcal{X}_i$ of \mathcal{X} , it is seen that A has a matrix representation $A = (A_{ij})_{i,j=1}^m$ such that

$$A_{ij}B_j = B_iA_{ij} \text{ for all } 1 \le i, j \le m$$

$$\iff A_{ij}(B_j - \mu_i) = (B_i - \mu_i)A_{ij} \text{ for all } 1 \le i, j \le m.'$$

Here, the complex numbers μ_i , $1 \le i \le m$, are distinct, the operators $B_i - \mu_i$ being Riesz for all $1 \le i \le m$ and (since $\mu_i \notin \sigma(B_j)$ for all $1 \le i \ne j \le m$) the operator $\mathcal{T}(B_j - \mu_i)$ is invertible for all $1 \le i \ne j \le m$. Consequently,

$$\mathcal{T}(A_{ij})\mathcal{T}(B_j - \mu_i)^n = \mathcal{T}(B_i - \mu_i)^n \mathcal{T}(A_{ij})$$

$$\iff \mathcal{T}(A_{ij}) = \mathcal{T}(B_j - \mu_i)^{-n} \mathcal{T}(B_i - \mu_i)^n \mathcal{T}(A_{ij}).$$

We have two possibilities: Either $\mathcal{T}(A_{ij}) \neq 0$ or $\mathcal{T}(A_{ij}) = 0$. If $\mathcal{T}(A_{ij}) \neq 0$, then (since $\mathcal{T}(B_i - \mu_i)$ is quasinilpotent)

$$||\mathcal{T}(A_{ij})|| \le ||\mathcal{T}(A_{ij})|| ||\mathcal{T}(B_j - \mu_i)^{-1}||^n ||\mathcal{T}(B_i - \mu_i)^n||$$

$$\implies 1 \le ||\mathcal{T}(B_j - \mu_i)^{-1}|| \lim_{n \to \infty} ||\mathcal{T}(B_i - \mu_i)^n||^{\frac{1}{n}} = 0.$$

This being a contradiction, we must have

$$\mathcal{T}(A) = \bigoplus_{i=1}^{m} \mathcal{T}(A_{ii}), \mathcal{T}(A_{ij}) = 0 \text{ and } [A_{ii}, B_{i}] = 0 \text{ for all } 1 \le i \ne j \le m.$$

Define the operators $M_i, N_i \in B[\mathcal{X}_i], 1 \leq j \leq m$, by

$$M_j = (A_{jj} - \lambda B_j) - \lambda(\mu_i - \mu_j), \quad N_j = A_{jj} - \lambda \mu_i \text{ for all } 1 \le i, j \le m \text{ if } \lambda \ne 0,$$
 and

$$M_j = A_{jj} - B_j + \mu_j$$
, $N_j = A_{jj}$ for all $1 \le j \le m$ if $\lambda = 0$.

Then the equivalences

$$\pi_B(B) \in \mathcal{R}[\mathcal{X}] \iff \prod_{i=1}^m (B - \mu_i) = \prod_{i=1}^m \{\bigoplus_{j=1}^m (B_j - \mu_i)\} \in \mathcal{R}[\mathcal{X}]$$

$$\iff \prod_{i=1}^m (B_j - \mu_i) \in \mathcal{R}[\mathcal{X}_j] \text{ for all } 1 \le j \le m$$

$$\iff B_j - \mu_j \in \mathcal{R}[\mathcal{X}_j] \text{ for all } 1 \le j \le m$$

and

$$\pi_{B}(A,\lambda) \in \Phi_{\times}(\mathcal{X}) \iff \prod_{i=1}^{m} \mathcal{T}(A - \lambda \mu_{i}) = \prod_{i=1}^{m} \{\bigoplus_{j=1}^{m} \mathcal{T}(A_{jj} - \lambda \mu_{i})\} \in \operatorname{Inv}_{\times}(\mathcal{X})$$

$$\iff \prod_{i=1}^{m} \mathcal{T}(A_{jj} - \lambda \mu_{i}) = \mathcal{T}\{\prod_{i=1}^{m} (A_{jj} - \lambda \mu_{i})\} \in \operatorname{Inv}_{\times}(\mathcal{X}_{j})$$
for all $1 \leq i, j \leq m$

$$\iff \prod_{i=1}^{m} (A_{jj} - \lambda \mu_{i}) \in \Phi_{\times}(\mathcal{X}_{j}) \text{ for all } 1 \leq i, j \leq m$$

$$\iff A_{jj} - \lambda \mu_{i} \in \Phi_{\times}(\mathcal{X}_{j}) \text{ for all } 1 \leq i, j \leq m$$

imply that

$$\delta_{\mathcal{T}(M_{j}),\mathcal{T}(N_{j})}^{n}(I_{j}) = (-\lambda)\delta_{\mathcal{T}(M_{j}),\mathcal{T}(N_{j})}^{n-1}\mathcal{T}(B_{j} - \mu_{j}) = \dots = (-\lambda)^{n}\mathcal{T}(B_{j} - \mu_{j})^{n}$$
$$= \dots = \delta_{\mathcal{T}(N_{j}),\mathcal{T}(M_{j})}^{n}(I_{j}).$$

This implies that the operators $\mathcal{T}(M_j)$ and $\mathcal{T}(N_j)$ are quasinilpotent equivalent, and hence

$$M_j \in \Phi_{\times}(\mathcal{X}_j) \iff N_j \in \Phi_{\times}(\mathcal{X}), \ 1 \le j \le m.$$

Now if we define $B_0 \in \mathcal{B}[\mathcal{X}]$ (as above) by $B_0 = \bigoplus_{j=1}^m (B_j - \mu_j)$, then

$$T(A - \lambda B_0 - \lambda \mu_i) = \bigoplus_{j=1}^m \{ T((A_{jj} - \lambda B_j) - \lambda(\mu_i - \mu_j)) \} \in \operatorname{Inv}_{\times}(\mathcal{X})$$
for all $1 \le i \le m$

$$\iff \bigoplus_{j=1}^m T(A_{jj} - \lambda \mu_i) \in \operatorname{Inv}_{\times}(\mathcal{X}) \text{ for all } 1 \le i \le m$$

$$\iff \prod_{i=1}^m \{ \bigoplus_{j=1}^m T(A_{jj} - \lambda \mu_i) \} \in \operatorname{Inv}_{\times}(\mathcal{X})$$

$$= \prod_{i=1}^m T(A - \lambda \mu_i) \in \operatorname{Inv}_{\times}(\mathcal{X})$$

$$\iff \pi_B(A, \lambda) \in \Phi_{\times}(\mathcal{X})$$

if $\lambda \neq 0$, and

$$\bigoplus_{j=1}^{m} \mathcal{T}(M_{j}) = \bigoplus_{j=1}^{m} \mathcal{T}(A_{jj} - B_{j} + \mu_{j}) = \mathcal{T}(A - B_{0}) \in \operatorname{Inv}_{\times}(\mathcal{X})$$

$$\iff \bigoplus_{j=1}^{m} \mathcal{T}(N_{j}) = \bigoplus_{j=1}^{m} \mathcal{T}(A_{jj}) = \mathcal{T}(\pi_{B}(A, 0)) \in \operatorname{Inv}_{\times}(\mathcal{X})$$

$$\iff \pi_{B}(A, 0) \in \Phi_{\times}(\mathcal{X})$$

if $\lambda = 0$.

(c) Let $\lambda \neq 0$. Choosing i = j in

$$\pi_B(A,\lambda) \in \Phi_{\times}(\mathcal{X}) \iff A - \lambda(\bigoplus_{j=1}^m (B_j - \mu_j + \mu_i) \in \Phi_{\times}(\mathcal{X})$$

for all $1 \leq i \leq m$, it then follows that

$$\pi_B(A,\lambda) \in \Phi_{\times}(\mathcal{X}) \Longrightarrow A - \lambda B \in \Phi_{\times}(\mathcal{X}).$$

Remark 2.1. (i) Some hypothesis of the type $[A, B] \in \text{Ptrb}\Phi_{\times}(\mathcal{X})$, or [A, B] = 0, is essential to the validity of Theorem 2.1. To see this, consider operators A, B such that $\pi_B(A, \lambda) \in \Phi_{\times}(\mathcal{X})$ and $\pi_B(B)$ is compact. Then, since $\mathcal{T}_p(\pi_B(B)) = 0 = \mathcal{T}(\pi_B(B))$, $\pi_B(A, \lambda) - \lambda^m \pi_B(B) \in \Phi_{\times}(\mathcal{X}) \iff \pi_B(A, \lambda) \in \Phi_{\times}(\mathcal{X})$. This

does not however imply $A - \lambda B$ (or, $A - B_0$ if $\lambda = 0$, or $A - \lambda B_0 - \mu_i$ if $\lambda \neq 0$) $\in \Phi_{\times}(\mathcal{X})$, as the following elementary example shows. Letting I denote the identity of $\mathcal{B}[\mathcal{X}]$, define the polynomially compact operator B (with minimal polynomial $\pi_B(z) = (z-1)^2$) by $B = \begin{pmatrix} I & I \\ 0 & I \end{pmatrix}$, and let $A = \begin{pmatrix} 2I & 0 \\ I & 0 \end{pmatrix}$. Then, with $\lambda = 1$, $\pi_B(A,\lambda) = \begin{pmatrix} I & 0 \\ I & -I \end{pmatrix}$ is invertible (hence, Fredholm). However the operator $A - \lambda B$ (which satisfies $(A - \lambda B)^2 = 0$) is not even semi-Fredholm. Again, if we define A by $A = \begin{pmatrix} I & 0 \\ I & -I \end{pmatrix}$, then $(A - B_0)^2 = 0$ and $A - B_0$ is not semi-Fredholm. Observe that neither of the hypotheses [A,B] = 0 or $[A,B] \in \mathrm{Ptrb}(\Phi_{\times}(\mathcal{X}))$ is satisfied.

(ii) Let A and B be the operators of Theorem 2.1, parts (b) and (c). Then $A - \lambda \mu_i \in \Phi_{\times}(\mathcal{X})$ if and only if $A_{jj} - \lambda \mu_i \in \Phi_{\times}(\mathcal{X}_j)$ for all $1 \leq j \leq m$ and $\mathcal{T}(A_{ij}) = 0$ for all $1 \leq i \neq j \leq m$. The conclusion $\mathcal{T}(A_{ij}) = 0$ for all $1 \leq i \neq j \leq m$ implies that the operator $A = [A_{ij}]_{1 \leq i,j \leq m}$ may be written as the sum $A = A_1 + A_0$, where $A_1 = \bigoplus_{j=1}^m A_{jj}$ and the compact (hence, Riesz) operator A_0 is defined by

$$A_0 = [A_{ij}]_{1 \le i,j \le m}$$
 with $A_{ii} = 0$ for all $1 \le i \le m$.

Recalling that the sum of two commuting Riesz operators is a Riesz operator, it follows that the operators $\frac{1}{\lambda}A_0 - B_0$ (case $\lambda \neq 0$) and $A_0 - B_0$ (case $\lambda = 0$) are Riesz operators. It is now seen that the operators

$$A - \lambda \mu_i - \lambda B_0 = (A_1 - \lambda \mu_i) + \lambda (\frac{1}{\lambda} A_0 - B_0)$$
 and $A_1 - \lambda \mu_i$ $(\lambda \neq 0)$, $A - B_0 = A_1 + (A_0 - B_0)$ and A_1 $(\lambda = 0)$

are quasinilpotent equivalent. Hence

$$A_1 - \lambda \mu_i \in \Phi_{\times}(\mathcal{X}) \iff A - \lambda \mu_i - \lambda B_0 \in \Phi_{\times}(\mathcal{X}), \ \lambda \neq 0$$

and

$$A \in \Phi_{\times}(\mathcal{X}) \iff A - B_0 \in \Phi_{\times}(\mathcal{X}).$$

This provides an alternative to some of the argument used to prove parts (b) and (c) of Theorem 2.1.

Let $\lambda(t)$ denote a continuous function from a connected subset \mathcal{I} of the reals into \mathcal{C} such that $\lambda(t_1) = 0$ and $\lambda(t_2) = 1$ for some $t_1, t_2 \in \mathcal{I}$, $t_1 < t_2$. Then (the argument of the proof of Theorem 2.1 holds with λ replaced by $\lambda(t)$ and we have):

Corollary 2.1. Let $A, B \in \mathcal{B}[\mathcal{X}]$ be such that $B \in Holo^{-1}(\mathcal{R}[\mathcal{X}])$.

- (a) If $\pi_B(A, \lambda) = \prod_{i=1}^m (A \lambda(t)\mu_i) \in \Phi_{\times}(\mathcal{X})$ and $[A, B] \in \text{Ptrb}(\Phi_{\times}(\mathcal{X}))$, then $A \lambda(t)B \in \Phi_{\times}(\mathcal{X})$ for all $t \in [t_1, t_2]$.
- (b) If A, B commute, then:
- (i) $\pi_B(A, \lambda(t)) = \prod_{i=1}^m (A \lambda(t)\mu_i) \in \Phi_{\times}(\mathcal{X})$ if and only if $A \lambda(t)(B_0 + \mu_i) \in \Phi_{\times}(\mathcal{X})$, $1 \leq i \leq m$, for all $t \in [t_1, t_2]$;
 - (ii) $\pi_B(A, \lambda(t_1)) \in \Phi_{\times}(\mathcal{X})$ if and only if $A B_0 \in \Phi_{\times}(\mathcal{X})$;
 - (iii) $\pi_B(A, \lambda(t)) \in \Phi_{\times}(\mathcal{X})$ implies $A \lambda(t)B \in \Phi_{\times}(\mathcal{X})$ for all $t \in [t_1, t_2]$.

Recalling the fact that "every locally constant function on a connected set is constant", it follows from the local constancy of the index function "ind" that

ind $(A) = \operatorname{ind}(A - B) = \operatorname{ind}(A - \lambda(t)B)$ for all $t \in [t_1, t_2]$. In particular, if $A \in \Phi_{\ell}(\mathcal{X})$ (resp., $A \in \Phi_{r}(\mathcal{X})$), then $(A - \lambda(t)B)(\mathcal{X})$ (resp., $(A - \lambda(t)B)^{-1}(0)$) is complemented by a finite dimensional subspace if and only if $A(\mathcal{X})$ (resp., $A^{-1}(0)$) is complemented by a finite dimensional subspace.

3. Operators with SVEP

 $A \in \mathcal{B}[\mathcal{X}]$ has the single-valued extension property at $\lambda_0 \in \mathbb{C}$, SVEP at λ_0 for short, if for every open disc \mathcal{D}_{λ_0} centered at λ_0 the only holomorphic function $f: \mathcal{D}_{\lambda_0} \to \mathcal{X}$ which satisfies

$$(T-\lambda)f(\lambda)=0$$
 for all $\lambda \in \mathcal{D}_{\lambda_0}$

is the function $f \equiv 0$. Thus SVEP if it has SVEP at every $\lambda \in \mathbb{C}$. Operators with countable spectrum have SVEP: If $A \in \mathcal{R}[\mathcal{X}]$, then both A and (the conjugate operator) A^* have SVEP. It is known that f(A), $A \in \mathcal{B}[\mathcal{X}]$ and $f \in H_c(\sigma(A))$, has SVEP at a point λ if and only if A has SVEP at every μ such that $f(\mu) = \lambda$ (see [1, Theorem 2.39] and [14]). If an $A \in \mathcal{B}[\mathcal{X}]$ has SVEP at a point λ , then SVEP for $B \in \mathcal{B}[\mathcal{X}]$ at λ does not transfer to A + B, even if A and B commute. However:

Proposition 3.1. [2, Theorem 0.3] If A and B commute, and if $B \in \mathcal{R}[\mathcal{X}]$, then SVEP at λ for A implies SVEP for A - B at λ .

Recall that the ascent (resp., descent) of $A \in \mathcal{B}[\mathcal{X}]$, asc(A) (resp., dsc(A)), is the least non-negative integer n such that $A^{-n}(0) = A^{-(n+1)}(0)$ (resp., $A^{n}(\mathcal{X}) =$ $A^{n+1}(\mathcal{X})$; if no such integer exists, then $\operatorname{asc}(A) = \infty$ (resp., $\operatorname{dsc}(A) = \infty$). Finite ascent (resp., descent) at a point λ for A implies ind $(A - \lambda) < 0$ and A has SVEP at λ (resp., ind $(A - \lambda) \ge 0$ and A^* has SVEP at λ); conversely, if $A - \lambda \in \Phi_{\times}(\mathcal{X})$ (resp., $A^* - \lambda \in \Phi_{\times}(\mathcal{X})$) has SVEP at 0, then $\operatorname{asc}(A - \lambda) < \infty$ and $0 \in \operatorname{iso}\sigma_a(A)$ (resp., $\operatorname{dsc}(A-\lambda) < \infty$ and $0 \in \operatorname{iso}\sigma_s(A)$) [1, Theorems 3.16, 3.17, 3.23, 3.27]. The operator A is upper Browder (resp., lower Browder, left Browder, right Browder, or (simply) Browder) if it is upper Fredholm with $asc(A) < \infty$ (resp., lower Browder with $\operatorname{dsc}(A) < \infty$, left Browder with $\operatorname{asc}(A) < \infty$, right Browder with $\operatorname{dsc}(A) < \infty$, Fredholm with $asc(A) = dsc(A) < \infty$). Let $A \in \times$ -Browder denote that A is one of upper Browder, lower Browder, left Browder, right Browder or (simply) Browder. It is well known, see [9, Theorem 7.92.] or [6, Proposition 2.2], that if $A, B \in \mathcal{B}[\mathcal{X}]$ are commuting operators, then $AB \in \times -Browder$ if and only if $A, B \in \times -Browder$. If an operator $A \in \{\Phi_+(\mathcal{X}) \cup \Phi_\ell(\mathcal{X})\}$ (resp., $A \in \{\Phi_-(\mathcal{X}) \cup \Phi_r(\mathcal{X})\}$ and A^*) has SVEP at 0, then A is upper or left (resp., lower or right) Browder [1, Theorem 3.52]. As before, the operator $B_0 \in \mathcal{B}[\mathcal{X}]$ is defined by $B_0 = \bigoplus_{j=1}^m (B_j - \mu_j)$.

The following theorem generalizes [6, Theorem 4.1].

Theorem 3.1. Let $A, B \in \mathcal{B}[\mathcal{X}]$ be such that [A, B] = 0, $\pi_B(B) = \prod_{i=1}^m (B - \mu_i) \in \mathcal{R}[\mathcal{X}]$ and $\pi_B(A, \lambda) = \prod_{i=1}^m (A - \lambda \mu_i) \in \Phi_{\times}(\mathcal{X})$ for some complex number λ . Then:

- (a) $A \in \times -Browder$ if and only if $A B_0 \in \times -Browder$.
- (b) (i) $\pi_B(A, \lambda) \in \times$ -Browder implies $A \lambda B \in \times$ -Browder, and (ii) $\pi_B(A, \lambda) \in \times$ -Browder if and only if $A \lambda B_0 \lambda \mu_i \in \times$ -Browder for all $1 \le i \le m$.
- (c) If $A \in \{\Phi_+(\mathcal{X}) \cup \Phi_\ell(\mathcal{X})\}$ has SVEP at 0 (resp., $A \in \{\Phi_-(\mathcal{X}) \cup \Phi_r(\mathcal{X})\}$ and A^* has SVEP at 0), then $A \lambda B$ is upper or, respectively, left (resp., lower or, respectively, right) Browder.

Proof. We consider the case \times -Browder = upper Browder or left Browder only (thus \times in Φ_{\times} shall stand for upper or left); the proof for the other cases is similar.

- (a) The operator $B_0 = \bigoplus_{i=1}^m (B_i \mu_i)$ being the direct sum of Riesz operators is a Riesz operator. Since A commutes with B_0 , $A B_0$ has SVEP at 0 if and only if A has SVEP at 0. Again, by Theorem 2.1(b.ii), $A B_0 \in \Phi_{\times}(\mathcal{X})$ if and only if $A \in \Phi_{\times}(\mathcal{X})$. Hence, since an operator T is \times -Browder if and only if $T \in \Phi_{\times}(\mathcal{X})$ and T has SVEP at 0 [1, Theorem 3.52], $A B_0 \in \times$ Browder if and only if $A \in \times$ -Browder.
- (b.i) The hypothesis $\pi_B(A, \lambda) \in \times$ -Browder implies $A \lambda \mu_i \in \times$ -Browder if and only if $A \lambda \mu_i \in \Phi_{\times}(\mathcal{X})$ and $A \lambda \mu_i$ has SVEP at 0. Since $\pi_B(B) = \prod_{i=1}^m (B \mu_i)$ is Riesz, there an integer $i, 1 \leq i \leq m$, such that $\lambda(B \mu_i)$ is Riesz (and commutes with $A \lambda \mu_i$). Hence $A \lambda B = (A \lambda \mu_i) (B \lambda \mu_i)$ has SVEP at 0. Since $A \lambda B \in \Phi_{\times}(\mathcal{X})$ by Theorem 2.1(c), $A \lambda B \in \times$ -Browder.
- (b.ii) The case $\lambda = 0$ being evident, we consider $\lambda \neq 0$. It is clear from Theorem 2.1(b.i) that

$$\pi_B(A,\lambda) \in \Phi_{\times}(\mathcal{X}) \iff A - \lambda B - \lambda \mu_i \in \Phi_{\times}(\mathcal{X}).$$

Since

$$\pi_B(A,\lambda) \in \times$$
-Browder $\iff A - \lambda \mu_i \in \times$ -Browder for all $1 \le i \le m$ $\iff A - \lambda \mu_i \in \Phi_{\times}(\mathcal{X}), A - \lambda \mu_i$ has SVEP at 0 for all $1 \le i \le m$.

The operator B_0 being a Riesz operator which commutes with $A - \lambda \mu_i$, it follows that $A - \lambda \mu_i - \lambda B_0$ has SVEP at 0 if and only if $A - \lambda \mu_i$ has SVEP at 0. Hence

$$\pi_B(A,\lambda) \in \times$$
-Browder $\iff A - \lambda B_0 - \lambda \mu_i \in \times$ -Browder.

- (c) Recall from above that if an operator $A \in \Phi_{\times}(\mathcal{X})$ has SVEP at 0, then $0 \in \text{iso}\sigma_a(A)$. Since $\sigma_a(A \lambda \mu_i) \subset \sigma_a(A) \{\lambda \mu_i\}$, it follows from our hypotheses that (at worst) $\lambda \mu_i \in \text{iso}\sigma_a(A)$ for all $1 \leq i \leq m$. Hence $A \lambda \mu_i$ has SVEP at 0. As seen above, $A \lambda B \in \Phi_{\times}(\mathcal{X})$. Hence, since the operator $B \mu_i$ is Riesz and commutes with $A \lambda \mu_i$, $A \lambda B_i = (A \lambda \mu_i) \lambda (B_i \mu_i)$ has SVEP at 0. This, [1, Theorem 3.52], implies that $A \lambda B \in \times$ -Browder.
- Remark 3.1. An alternative argument proving Theorem 3.1(b.i) goes as follows. If \times = upper or left, then the hypotheses imply that $\pi_B(A,\lambda)$ has SVEP at 0 and the Riesz operator $\pi_B(B)$ commutes with $\pi_B(A,\lambda)$. Hence $\pi_B(A,\lambda) \lambda^m \pi_B(B)$ has SVEP at 0. Already we know from (the proof of) Theorem 2.1 that $\pi_B(A,\lambda) \lambda^m \pi_B(B) \in \Phi_{\times}(\mathcal{X})$, where $\Phi_{\times}(\mathcal{X}) = \Phi_{+}(\mathcal{X}) \cup \Phi_{\ell}(\mathcal{X})$. Hence $\pi_B(A,\lambda) \lambda^m \pi_B(B) = (A \lambda B)g(A, B, \lambda) = g(A, B, \lambda)(A \lambda B)$ is upper or (resp.) left Browder. This implies $A \lambda B$ is upper or (resp.) left Browder.
- Essential SVEP. Let $\mathcal{T}_q: \mathcal{B}[\mathcal{X}] \to \mathcal{B}[\mathcal{X}_q], \ \mathcal{X}_q = \ell^\infty(\mathcal{X})/m(\mathcal{X}),$ denote the homomorphism effecting the essential enlargement $A \to \mathcal{T}_q(A) = A_q$ " of [4] (and [15, Theorems 17.6 and 17.9]). Then $A \in \mathcal{B}[\mathcal{X}]$ is upper semi-Fredholm (lower semi-Fredholm), $A \in \Phi_+(\mathcal{X})$ (resp., $A \in \Phi_-(\mathcal{X})$), if and only if A_q is bounded below (resp., A_q is surjective); $A_q = 0$ for an operator A if and only if A is compact, and if $A \in \mathcal{R}[\mathcal{X}]$, then A_q is a quasinilpotent. Recall from Theorem 2.1(b.ii) and (c) that if $A, B \in \mathcal{B}[\mathcal{X}]$ are such that $[A, B] = 0, \ \pi_B(B) = \prod_{i=1}^m (B \mu_i) \in \mathcal{R}[\mathcal{X}]$

and $\pi_B(A,\lambda) = \prod_{i=1}^m (A - \lambda \mu_i) \in \Phi_{\pm}(\mathcal{X})$, then $A - \lambda B \in \Phi_{\pm}(\mathcal{X})$ if $\lambda \neq 0$ and $A - B_0 \in \Phi_{\pm}(\mathcal{X})$ if $\lambda = 0$. If we now assume that $\pi_B(A,\lambda) \in \Phi_{-}(\mathcal{X})$ (resp., the conjugate operator $\pi_B(A,\lambda)^* \in \Phi_{-}(\mathcal{X})$), $\lambda \neq 0$, has SVEP at 0, then $A - \lambda B \in \Phi(\mathcal{X})$ is inner regular. Again, if we assume $\lambda = 0$ and $A \in \Phi_{-}(\mathcal{X})$ (resp., $A^* \in \Phi_{-}(\mathcal{X})$) has SVEP at 0, then $A - B_0 \in \Phi(\mathcal{X})$ is inner regular. SVEP for an operator neither implies nor is implied by SVEP for its image under the homomorphisms \mathcal{T}_q [3, 2.9 Remark]: We say in the following that A has essential SVEP at a point λ if $A_q = \mathcal{T}_q(A)$ has SVEP at λ . The following corollary says that a result similar to the one above on the inner regularity of $A - \lambda B$ and $A - B_0$ holds with the hypotheses on SVEP replaced by hypotheses on essential SVEP.

Corollary 3.1. Let $A, B \in \mathcal{B}[\mathcal{X}]$ be such that [A, B] = 0, $\pi_B(B) = \prod_{i=1}^m (B - \mu_i) \in \mathcal{R}[\mathcal{X}]$, $\pi_B(A, \lambda)$ has essential SVEP at 0 whenever $\pi_B(A, \lambda) \in \Phi_-(\mathcal{X})$ and $\pi_B(A, \lambda)^*$ has essential SVEP at 0 whenever $\pi_B(A, \lambda) \in \Phi_+(\mathcal{X})$, then $A - \lambda B \in \Phi(\mathcal{X})$ if $\lambda \neq 0$ and $A - B_0 \in \Phi(\mathcal{X})$ if $\lambda = 0$.

Proof. We consider the case in which $\pi_B(A,\lambda) \in \Phi_+(\mathcal{X})$ and $\pi_B(A,\lambda)^*$ has essential SVEP at 0: The proof for the other case is similar. Arguing as in the proof of Theorem 2.1, the hypotheses $[A,B]=0, \pi_B(B) \in \mathcal{R}[\mathcal{X}]$ and $\pi_B(A,\lambda) \in \Phi_+(\mathcal{X})$ imply that if $\lambda \neq 0$, then

$$A-\lambda\mu_i \ \text{ and } \ A-\lambda B\in \Phi_+(\mathcal{X}) \ \text{ for all } \ 1\leq i\leq m$$

$$\iff T_q(A-\lambda\mu_i) \ \text{ and } \ T_q(A-\lambda B) \ \text{ are bounded below for all } \ 1\leq i\leq m$$
 and if $\lambda=0$, then

A and $A - B_0 \in \Phi_+(\mathcal{X}) \iff T_q(A)$ and $T_q(A - B_0)$ are bounded below. Since $T_q(A - \lambda \mu_i)$ is bounded below for all $\leq i \leq m$ implies $\pi_B(A, \lambda)$ is bounded

below, it follows from the hypothesis $T_q(\pi_B(A,\lambda)^*)$ has SVEP that

 $T_q(\pi_B(A,\lambda))$ is invertible $\iff T_q(A-\lambda\mu_i)$ is invertible for all $1\leq i\leq m$ [1, Corollary 2.24]. Letting A and B have the representations $A=[A_{ij}]_{1\leq i,j\leq m}\in B(\oplus_{j=1}^m \mathcal{X}_j)$ and $B=\oplus_{j=1}^m B_j\in B(\oplus_{j=1}^m \mathcal{X}_j)$ (as in the proof of Theorem 2.1), this implies that $T_q(A_{jj}-\lambda\mu_j)$ is invertible, and $T_q(B_j-\mu_j)$ is quasinilpotent, for all $1\leq j\leq m$. Since the operators $T_q(A_{jj}-\lambda\mu_j)$ and $T_q(B_j-\mu_j)$ commute, $\sigma(T_q(A_{jj}-\lambda B_j))\subset \sigma(T_q(A_{jj}-\lambda \mu_j))-\{0\}$ and $\sigma(A_{jj}-B_j+\mu_j)\subset \sigma(T_q(A_{jj}))-\{0\}$ for all $1\leq j\leq m$. Hence the operators $T_q(A_{jj}-\lambda B_j)$ and $T_q(A_{jj}-B_j+\mu_j)$ are invertible for all $1\leq j\leq m$. But then

$$T_q(A-\lambda B)=T_q\{\oplus_{j=1}^m(A_{jj}-\lambda B_j)\} \text{ invertible } \iff A-\lambda B\in\Phi(\mathcal{X})$$
 and

$$T_q(A - B_0) = T_q\{\bigoplus_{j=1}^m (A_{jj} - B_j + \mu_j)\}$$
 invertible $\iff A - B_0 \in \Phi(\mathcal{X}).$ This completes the proof.

4. A PERTURBED INNER REGULAR OPERATOR

If $A \in \Phi_{\times}(\mathcal{X})$, $\Phi_{\times} = \Phi_{\ell}$ or Φ_{r} , then A has an inner generalized inverse, which we shall denote by A^{\dagger} in the following. Clearly, the operator AA^{\dagger} is (then) a projection from \mathcal{X} onto $A(\mathcal{X})$, and $I - A^{\dagger}A$ is a projection from \mathcal{X} onto $A^{-1}(0)$. Let N denote a complement of $A(\mathcal{X})$ and let M denote a complement of $A^{-1}(0)$. Then $A: M \oplus A^{-1}(0) \to A(\mathcal{X}) \oplus N$ has a matrix $A = A_1 \oplus 0$, where $A_1 \in \mathcal{B}[M, A(\mathcal{X})]$ is invertible. If A^{\dagger} is any generalized inverse of A such that $A^{\dagger}A(\mathcal{X}) = M$ and $(AA^{\dagger})^{-1}(0) = N$,

then $A_{M,N,E}^{\dagger} = A^{\dagger} : A(\mathcal{X}) \oplus N \to M \oplus A^{-1}(0)$ has the form $A_{M,N,E}^{\dagger} = A_1^{-1} \oplus E$ for some arbitrary $E \in \mathcal{B}[N,A^{-1}(0)]$ [7, Page 37]. Now let $A,B \in \mathcal{B}[\mathcal{X}]$ be such that $B \in Holo^{-1}(\mathcal{R}[\mathcal{X}])$ (with minimal polynomial $\pi_B(z)$, defined as in Theorem 2.1), $AB - BA \in \text{Ptrb}(\Phi_{\ell}(\mathcal{X}))$ and $\pi_B(A,\lambda) = \prod_{i=1}^m (A - \lambda \mu_i) \in \Phi_{\ell}(\mathcal{X})$ for some scalar λ . Then the operators $A - \lambda B$ if $\lambda \neq 0$ and $A - B_0$ if $\lambda = 0$ (with the operator B_0 as earlier defined) are in $\Phi_{\ell}(\mathcal{X})$. Letting S denote either of the operators $A - \lambda B$ and $A - B_0$, it then follows that S has an inner generalized inverse S^{\dagger} . In general $A(\mathcal{X})$ and $S(\mathcal{X})$, also $A^{-1}(0)$ and $S^{-1}(0)$, are quite distinct. However:

Theorem 4.1. If $AA^{\dagger} = SS^{\dagger}$ and $A^{\dagger}A = S^{\dagger}S$, then A and S have the same range and the same null space, and S^{\dagger} has a representation

$$S^{\dagger} = (I - \lambda A_{N,M,E}^{\dagger} B)^{-1} A_{N,M,F}^{\dagger} \quad \text{if } \lambda \neq 0, \quad \text{and}$$

$$S^{\dagger} = (I - A_{N,M,E}^{\dagger} B_0)^{-1} A_{N,M,F}^{\dagger} \quad \text{if } \lambda = 0.$$

Here N is a complement of $A(\mathcal{X})$, M is a complement of $A^{-1}(0)$ and $E, F \in \mathcal{B}[N, A^{-1}(0)]$ are arbitrary.

Proof. If $AA^{\dagger} = SS^{\dagger}$ and $A^{\dagger}A = S^{\dagger}S$, then

$$S(\mathcal{X}) = SS^{\dagger}(\mathcal{X}) = AA^{\dagger}(\mathcal{X}) = A(\mathcal{X}),$$
 and $S^{-1}(0) = (S^{\dagger}S)^{-1}(0) = (A^{\dagger}A)^{-1}(0) = A^{-1}(0).$

Now choose the subspaces N, M as above. For $A_1 = A|_M$, $S_1 = S|_M$ and every $E \in \mathcal{B}[N, A^{-1}(0)]$, if $\lambda \neq 0$, then the operator

$$\begin{split} I - \lambda A_{N,M,E}^{\dagger} B &= I + A_{N,M,E}^{\dagger} (S - A) \\ &= I + \begin{pmatrix} A_1^{-1} & 0 \\ 0 & E \end{pmatrix} \begin{pmatrix} S_1 - A_1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} A_1^{-1} S_1 & 0 \\ 0 & 1 \end{pmatrix} \end{split}$$

from $M \oplus A^{-1}(0)$ into $A(\mathcal{X}) \oplus N$ is invertible with the inverse satisfying

$$(I + A_{N,M,E}^{\dagger}(S - A))^{-1}A_{N,M,F}^{\dagger} = \begin{pmatrix} S_1^{-1}A_1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} A_1^{-1} & 0 \\ 0 & F \end{pmatrix} = \begin{pmatrix} S_1^{-1} & 0 \\ 0 & F \end{pmatrix}$$

for every operator $F \in \mathcal{B}[N, A^{-1}(0)]$. Again, if $\lambda = 0$, then

$$I - \lambda A_{N,M,E}^{\dagger} B_0 = I + A_{N,M,E}^{\dagger} (S - A) = \begin{pmatrix} A_1^{-1} S_1 & 0 \\ 0 & 1 \end{pmatrix}$$

from $M \oplus A^{-1}(0)$ into $A(\mathcal{X}) \oplus N$ is invertible with the inverse (as before) satisfying

$$(I+A_{N,M,E}^{\dagger}(S-A))^{-1}A_{N,M,F}^{\dagger} = \left(\begin{array}{cc} S_1^{-1}A_1 & 0 \\ 0 & 1 \end{array} \right) \left(\begin{array}{cc} A_1^{-1} & 0 \\ 0 & F \end{array} \right) = \left(\begin{array}{cc} S_1^{-1} & 0 \\ 0 & F \end{array} \right)$$

for every operator $F \in \mathcal{B}[N,A^{-1}(0)]$. Evidently, $SS^{\dagger}S = S$, where $S^{\dagger} = (I + A_{N,M,E}^{\dagger}(S-A))^{-1}A_{N,M,E}^{\dagger}$.

ACKNOWLEDGEMENT

We thank an anonymous referee who made sensible remarks to improve the paper.

References

- P. Aiena, Fredholm and Local Spectral Theory, with Applications to Multipliers. Kluwer-Springer, New York, 2004.
- P. Aiena and V. Müller, The localized single-valued extension property and Riesz operators, Proc. Amer. Math. Soc. (2015). DOI: S 0002-9939(2014)12404-X.
- E. Albrecht and R.D. Mehta, Some remarks on local spectral theory, J. Operator Theory. 12 (1984), 285–317.
- J.J. Buoni, R.E. Harte and A.W. Wickstead, Upper and lower Fredholm spectra, Proc. Amer. Math. Soc. 66 (1977), 309–314.
- S.L. Campbell and G.D. Faulkner, Operators on Banach spaces with complemented ranges, Acta Math. Acad. Sci. Hungar. 35 (1980), 123–128.
- D S. Djordjević, B.P. Duggal and S.Č. Živković-Zlatanović, Perturbations, quasinilpotent equivalence and communicating operators, Math. Proc. Royal Irish Acad. 115A (2015), 1-14.
- D. S. Djordjević and V. Rakočević, Lectures on Generalized Inverse, Faculty of Science and Mathematics, University of Niš, Niš 2008.
- 8. F. Gilfeather, The structure and asymptotic behaviour of polynomially compact operators, Proc. Amer. Math. Soc. 25 (1970), 127–134.
- 9. R.E. Harte, Invertibility and Singularity, Dekker, 1988.
- J.R. Holub, On perturbation of operators with complemented range, Acta Math. Hung. 44 (1984), 269–273.
- 11. A. Jeribi and N. Moalla, Fredholm operators and Riesz theory for polynomially compact operators, Acta Applicandae Math. 90 (2006), 227–247.
- 12. C.S. Kubrusly and B.P. Duggal, *Upper-lower and left-right semi-Fredholmness*, Bull. Belg. Math. Soc. Simon Stevin, **23** (2016), 217–233.
- 13. K. Latrach, J. Martin Padi and M.A. Taoudi, A characterization of polynomially Riesz strongly continuous semigroups, Comment. Math. Carolina 47 (2006), 275–289.
- K.B. Laursen and M.N. Neumann, Introduction to Local Spectral Theory, Clarendon Press, Oxford, 2000.
- 15. V. Müller, Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras, 2nd edn. Birkhäuser, Basel, 2007.
- S.Č. Živkovic-Zlatanović, D.S. Djordjević, R.E. Harte and B.P. Duggal, On polynomially Riesz operators, Filomat 28:1 (2014), 197–205.
 - 8 Redwood Grove, Northfield Avenue, Ealing, London W5 4SZ, United Kingdom $E\text{-}mail\ address:\ bpduggal@yahoo.co.uk}$

Catholic University of Rio de Janeiro, 22453-900, Rio de Janeiro, RJ, Brazil $E\text{-}mail\ address$: carlos@ele.puc-rio.br