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ABSTRACT: This paper deals with convergence of sequences of nuclear operators on
a separable Hilbert space. Emphasis is given to trace-norm convergence, which is a basic
property in stochastic systems theory. Obviously trace-norm convergence implies uni-
form convergence. The central theme of the paper focus the opposite way, by inves-
tigating when convergence in a weaker topology turns ouf to imply convergence in a
stronger topology. The analysis carried out here is exhaustive in the following sense.
All possible implications within a selected set of asymptotic properties for sequences
of nuclear operators are established. The special case of correlation operators is also
considered in detail.
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RESUMO: Este artigo lida com convergéncia de seqiiéncias de operadores nucleares
em um espago de Hilbert separavel. O problema de convergéncia na norma do trago,
que é uma propriedade bdsica na teoria de sistemas estocdsticos, é enfatizado. Obvia-
mente convergéncia na norma do traco implica em convergéncia uniforme. O tema cen-
tral desse artigo focaliza o sentido inverso da implica¢do acima, investigando quando
aconvergéncia em uma topologia mais fraca vem implicar na convergéncia em umato-
pologia mais forte. A andlise desenvolvida aqui é exaustiva no seguinte sentido. Todas
as possiveis implicagfes, dentro de um conjunto selecionado de propriedades assinto-
ticas para seqiiéncias de operadores nucleares, sdo estabelecidas. O caso especial de ope-
radores correlacdo é também considerado em detalhe. '
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1. INTRODUCTION

A nuclear.-(or-trace-class)-operator-T-on-a separable Hilbert space H is a
bounded Tinear operator, which is compact and its absolute value |T| has a
finite trace. Obviously any finite-dimensional linear operator ({.e. one with
a finite-dimensional range) is nuclear and, in particular, any linear ‘operator
on a finite-dimensional normed 1linear space is nuclear. A correlation operator
is a nonnegative nuclear operator.

Nuclear operators play a fundamental role in infinite-dimensional sto-
chastic system theory (cf. [3] and [6]), since correlation operators naturally
arise in the characterization of second-order H-valued random variables (e.g.
see [15]). Therefore, some of the main problems for stochastic dynamical systems
in Hilbert space, such as identification, filtering, stability, and optimal
control, usually require nuclear operators at-the modelling stage, either
impTlicitly or explicitly (e.g. see [2], [4], [101, and [17], respectively).

However, nuclear and (in particular) correlation operators have a much
stronger significance in system theory than just being a proper instrument for
a rigoroug modeiling of infinite-dimensional stochastic systems {e.g. see [1]
and [51). Actually, convergence of sequences of correlation operators is a
basic property in stochastic system analysis. For instance, mean-square sta-
bility for discrete dynamical systems deals esseqtia}1y-with convergence pﬁesg{
vation-between correlation sequences (e.g. see [11]1-[13]). Moreover, trace-norm
convergence for sequénces of correlation operators turns out to be also a
necessary and sufficient condition for quadratic-mean‘convergence of  random
sequences [cf. [121).

In this paper we investigate the relationship among a se]ectéd set of
asymptotic properties for sequences of nuclear operators on a separable Hilbert
space. A rather complete analysis on trace-norm convergence is given. The paper
is organized as follows, Auxiliary results, which will be needed along the text,
are presented in Section 2. There we prove Theorem 1, which deals with conver-
gence of sequences of absolutely summable sequences in a Banach space. The main
results, which are stated in Theorem 2, appear in Section 3. There we consider
a set of asymptotic properties regarding boundedness, dominance and convergence
for sequences of nuclear operators. A1l possible implications among them are
established in Theorem 2. In particular, we show that a sequence of nuclear
operators converges in the trace-norm if and only if it converges uniformly and
its trace-nerm sequence converges. It is also shown that a dominated seguence
of nuclear operators converges in the trace-norm, whenever it converges in the
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uniform norm topology. The special case of correlation operators is considered
in Section 4, where further results are obtained. For instance, it is  shown

that a locally one-sided weakly convergent correlation sequence converges in
the trace-norm, whenever its Timit is a correlation operator. ITTustrative
examples are given in Section 5.

2. PRELIMINARY RESULTS

Let (X, || ||} be a normed Tinear space. (%,(X), || [|,) and (2 (X), || [,)
will denote the normed Tinear space of all X-valued sequences x=(x{1),x(2),...)
such that Hx”1=2:=1ﬂx(k)n <o or f[x||_=sup o [x(K}[] <=, respectively, which
are Banach spaces whenever (X, |[ ||) 1is a Banach space. Clearly &, (X) =2 _(X).

The purpose of this section is to prove Theorem 1 below. There it will be
established the relationship among several asymptotic properties for sequences
in £,(X), which will play a fundamental role for supporting the main results in
Section 3. We begin by supplying an auxiliary inequality.

Lemma 1. If x,y e 2,(X), then for every jz0

R YR P AT BT M i POST

=J+
"
or equivalently,

Dyl s ol = Oxll, + 2slly=xll, +2 57 lxtw]
=j+1

Proof. For j=0 the above result is reduced to the triangle inequality in %, (X}.
For each jz1 we can write
J

Iyl el -2 g hvtole 37 ol

h

i )
2 (sl - o]+ 2 vl - <]

A

I

J %
k - k k - k = - ’
Jy 00 =yl 37 10 - 50l = el

N
by the triangle inequality in X. Recalling that }, .|l y(k)|| silly{l, for every
j21, we get the desired result,
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Theorem 1. Set £ =(2 (X), || [|,,) and £,=(2,(X), || ||,) for some Banach space
X, I} Let x e ¢ and {x; & 2,; 120}, and considerthe following assertions:

(A) ||x1--x||l + 0 as  ive
® Il = I, e v
(©) sup x5l <=

(D) lei—me > 0 as  ise
(E) x e 2,

We claim that the diagram below characterizes all possible implications among

the above statements.

(B}
(c) & (E)
(D)
DIAGRAM 1
Now consider a further assertion:
(FY To_ysup || %K) < =,
k=1 i20 i
which is equivalent to
(F') llxi(k)|l s ||y ¥k21  ¥iz0 for some y e &,

which means that {xi=(x1(1),xi(2),...) ¢ 2,5 120} is dominated by some y & 4,.
We also claim that the implications between (F) and the preceding statements
are all characterized by the following diagram.



Nuclear and correlation operators 269

(o)

DIAGRAM 2.

Proof. It is trivially verified that (A) = (B,D), (B} = (C,E), and
(F') <—> (F) = (C). By the triangle inequality in X we get

A

J J
k§1 || x5 (K)-x (k) [} + k21 | x; (K |f

J
Ll x()]
k=1

A

Jllx-xll, + sup %l
for every jz1 and iz0. Thus (C,D) => (E). By Lemma 1 we have

Fxgxll s Tl = IExl T e 2illgxlle+ 2 B lTx@]

k=1 +

for every jz1 and iz0, whenever Xis X € %, Hence, if (B,D) hold true, we get
for every jzi1,

Tim sup|| x,-x|[ < 2 7 [Ix(k)l{ > 0 as e
0 1. =j+1

since x € £, and X is a Banach space. Then (B,0) = (A). Now assume that (D,F)
hold true, and notice that x e &, (since (F) == (C) and {C,D) = (E3). Thus,
by the triangle inequality in X,

|l = ]l 1= Ikg’(ll x; (0] - x| < kz? I x; (k)-x(K) |
j {ns]
s T x 00+ 1 Ul Ooll« I xto )
k=1 k=j+1
s il T lyvtol+ . x|

k=j+1 =]+
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for every j21 and i20, for some y & %,. Hence, for every jz1,

vin sup| || x; H -l bs Tyl T x| -0 e
o0 k=j+1 k-J+
since x,y € &, and X is a Banach space. Therefore (D,F) => {B), so that
(D,F) = (A), since (B,D) == (A). Finally we show that the above established
results are the only possible implications among assertions (A) to (F). For
this we set (X, || [[)=(¢, | |), and e,=(0,...,0,1,0,...) ¢ 2, foreachkz1, with

the nonzero entry at the kth position. To show that (A) ~=> (F) set x=0 and
X; =[(i+2)8og(i+2)] ZT+2 € for every iz0. Then (A,B,C,D,E) == (F). By setting
X= (Ek (K*)e,  and _Z1+1 k™%e, for every i20 it can be verified  that
(B,F) == (D) Thus (B, C E, F) ==> (D) Hence (B,C,E,F) == (A). Now set x=0 and
xi(i+1)' {;*; e, for every 120 so that (C,D) == (B). Therefore (C,D,E) == (B).
Hence (C,D,E) == (A). If we set x=0 and x. -[£09(1+2)] Z;+$ ey for every 120
it follows that (D,E) = (C). With x=J;_k™'e, and . x;=L*lk7'e  for
every i20 it is shown that (D) =% (E). It is obvious that (C E F) =+=> (B) and

(C,F) = (E).
Remark 1. By combining the two diagrams in Theorem 1 there results

‘3
(a)

(C)
DIAGRAM 3

Notice that the only necessary and sufficient condition in the above
diagram is (A) <= (B,D). It is also worth noticing that (D,F) — (A} 1is a
discrete version of the Dominated Convergence Theorem for p=1 (cf. [7]1, p.151).
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3. MAIN RESULTS

Throtghout this section H will déncte a separable nontrivial Hilbert space,
with < ; > and || || standing for inner product and norm in H, respectively. We
shall use the same symbol || || to denote the uniform induced norm in B{H], the
Banach algebra of all bounded Tinear operators of H into itself, and Po(T) will
denote the point spectrum (i.e. the set of all eigenvalues) of T & B[H]. Let
T* g B[H] be the adjoint of T e B[H]. The standard notation 0sT will be used if
a self-adjoint operator T=T* ¢ B[H] is nonnegative ({.e. 0s<Tx;x> ¥x ¢ H). We
set B[H]"={T ¢ B[HI: 0sT}, the closed convex cone of all nonnegative operators
on H. Given T,S & B[H] we shall write TsS whenever (S-T) e B{H]", and #TsS  if
either T<S or -TsS. Tl/2 ¢ B[HI® will denote the (unique) square root of
T & B[HI". Set [T[:(T"‘T)l/2 ¢ B[H]", the absolute value of T ¢ B[H], so that
B[H]*={T & B[H]: T=|T|}.

Remark 2. The following results on absolute value operators will be used later
in this section. Consider a sequence {Ti € B[H]: iz0}. Then

(@) fiTxll -0 as i ¥x e H
if and only if -

(b) <|Tilx 5 x>0 as = ¥xeH.
Actually, for any T € B[H],

2 .
Atix s oxe = T s AT Ul

R A R R

for all x e H. Thus (a) => (b) trivially, and (b} =— (a) by the Banach-
-Steinhaus Theorem {e.g. see [16] p.74). Also recall that, for any T e B[H],

FiT = el = e

According to the above three basic results, which are trivially verified,
there follows immediately a useful inequality. For all x & H,

” TXHZ < “T” < lTlx ; X>
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Let B_[H] be the class of all compact operators from B[H]. From now on we
assume that T e B_[H], or equivalently, |T| e B_[H]. Thus Pa(|T|) = [0, | T|| 3
is countable, and 0=y & Po([T[) has finite multiplicity. Each TR Po |T| is
referred to as a singular value of T. Therefore, for any T e B_[H] there exists
a nonincreasing nonnegative null sequence my (uT( ),uT(Z),...) ¢ 2 made up of
all singular values of T, each nonzero one counted according to its multiplicity
as an eigenvalue of |T|, so that || T]| =|| mT|Ln=“T(1) and  pp(k+1)gur(k)=n_o(k)

for every k1. Set || ||, =[[ me|l, =L, _,u;(k) whenever My € &y, SO that
[ Tl < || T}, , and et B [HI={T ¢ B_[H]: || T||,<=} be the class of all nuclear
(or trace-class) operators on H. Actually || ||, is a norm in B,[H], the so-
-called trace-norm, and (B,[Hl, || ||, ) is a Banach space. We set

Bl[H]+=Bl[H] n BL[HIT, the c?ass of all correlation operators on H, so that
[TI (3 Bl[H]+ if and only if T ¢ B,[H]. For any T & B,[H] a trace can be defined
by tr(T)=E:=1<Tek;ek> which does not depend on the choice of the orthonormal
basis {e ; kz1} for H, so that |[tr(T)|str(|T|)=| T|[, . For a comprehensive
discussion on nuclear operators the reader is referred to [8],191,[147and [16].

Remark 3, The following properties of singular values will be needed in  the
sequel. Let j,k,2 be arbitrary positive integers. If T,S e Bm{HJ, then

A

(a) upglrt1) S ui(k) + ug(2)

B) T 0f Do s Lot
Kep TS K=l | k=1 >

- J i i
(c) k§1 [ (k)= (k)| = k§1 M (k) + 2 k§1 k(k)

Moreover, if 7,5 e B,[H], then

(d) P k) e (K) | =20 T8 S 2 (K)1+5 T

k=2j+7 T 5 ] “1 ” “ k=1 k=3+1 S
The results in (a) and (b} are well known ({e.g. see [9], pp.30,48). To
verify the results in {c) and (d) we proceed as follows. For any j2i- set

d={k=1,..., j: us(k)guT(k)}. Then, by (b},

J
) ug (k)=up (k)1 + 2 ) [up(k)-1g (k)]
k=1 ked

1]

2 )b (k) |
U -
liai Hg

A

(k) + 2 (k) -2
E s-T E : kgd stk
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Thus the result in (c) follows by symmetry. Now let T,S & B, [H], and
recall from (a) that

kgj up(2k) < 17 up(2k-1) < kg: py_g(k) + kg: Hg (k)

k=3

for every j21. Thus

® (k) $ 20 7w (k) ¢ T ue(K)]
k=§j-1 T kzj T-$ kej >

for every jzi, so that

I~

2 3 (k} +3 ¥ nelk)
k=2j+1 by st e ® L

k=j+1 k=j+1

for every jz1. But, according to (b),

T IP CORID TN €Y

i
N1-sll - sl + ¥ [uclk)-ue (k)3
K=3+1 k=g +1 - s, k=g oS-

IA

J
75l - sl + Tt

for every jz1, which completes the proof of (d). o

To investigate the relatioship among some asymptotic properties for se-
quences of nuclear operators is the purpose of this paper. This will be develop
ed in Theorem 2 below. As before, we begin by presentingan auxiliary inequaltiy
that will suffice our needs.

Lemma 2. If T,S & BltH], then for every jz0

F7-sll s 3Ch T - WISl )) + 85l T-sff + 7 k=§+1 ug (k)

Proof. The result is trivial for j=0 by the triangle inequality in
(B,[H1, || ||,) - Recalling that 2i=1uT(k)gj” T|| , it follows by Remarks 3(c,d)
that

2]
(k) ~pc (k) ” (k) -ue (k)
s i (K- R] + k=§j+1 (05 (0|

=X

A

3| T-s]|l - 2||5||l + 63||T]] + 5 . L uglk)

=J+
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for every jz1. Therefore, by Lemma 1

Tr' érwrﬁi;& - S|} + 23 'fﬁ”;wé “ (k)
Il < WMmpmgll - ISl + 23(I7] o s

s 3(lIT-sll_- WIsll )+ s3lITl + 7 _§i1 ug (k)

for every jz1 and for all T,S e B,[H]. By replacing T by S-T we get the desired
result.

Theorem 2. Let T e B_[H], {Ti 6 B.[H]; 120}, and consider- the following
assertions:

) T5-Tl, » 0 as e,
@ Tl Tl a5 i
© sup Il <=

() [75-Ti[ » 0 as e,
(E) TeB,[H]. i

Now consider three further assertions stating %hat {Ti e B, [HI: iz0} is
dominated by some S ¢ Bl[H].

(F) T supup (k) <=,
L i20 i

(F') uTi(k) < ps(k) ¥kz1  ¥iz0 for some S e B [H] ,
(@) |T;] ss B HT" vizo
which are related as follows:
(G) == (F) «<— (F')
The above relationship together with Diagrams 1 and 2 (or Diagram  3)

characterize all possible implications among the preceding statements. Finally
consider the following additional assertions:
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(H) 0 (T.-T) sSeB[H]" foreach iz0,

() |<(T;-Tx 5 %[ >0 as = ¥xeH.

We also claim that (H,I) => {A). Actually, by considering the auxiliary
statements

(9) [T4-T] <5 e B,[HI" ¥iz0 ,

(K) [ (T4-Tx[[ + 0 as > ¥xeH,

the implications in Diagram 4 hold true.

(H) o{J)

(A)
(1) > (K) e
DIAGRAM 4.
+
Proof. It is trivially verified that (A) — (B,D), (B) = (C,E}, - and
(F') => (F) => (C). Moreover, it is well known (cf. [91, p.26) that

() => (F'). Furthermore, it is a simple matter to show that (F) — (F') by
setting us(k)=supi>ouT.(k) for every kz1, and defining S e Bl[H]““ by the formlila
= 1

Sx = kZT us(k) X 3 og> ey VW ¢ H ,
for some orthonormal basis {ek; k21} for H. By Remark 3(a) or 3(b)
J . j .
k§1 up(k) < J“T~Ti(1) + kZ1 uTi(k) < il T-TiH + ?;8 I Tinl
for every j21 and i20, Thus (C,D)} == (E). By Lemma 2 we have

Ity s ot Tl = e UmTl e 7 17 et
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for every jzt and iz20, whenever Ti,T ¢ B [H]. Hence, if (B,D) hold true, we get
for every jz21

Vimsup || T,-T|| <7 F7 u(k) >0 as g,
oo S

since T e B,{H]. Then (B,D) —> (A). Now assume that (D,F) hold - true, and
notice that T e B,[H] (because (F) = (C) and (C,D) = (E)). Thus, since
S”Pk>1|uT (k)-u (k)| <] Ti'Tll for every i20 according to Remark 3(a),

= i

AR RN

“ Tue (k) ~ur(k)3
Ik§1 T |

A

j COo
k§1 |“Ti(k)'“T(k)| + k=§+1 [“Ti(k)+“T(k)3

A

PlT-T s Y uek) w5 up(k)
| 1 | k=§+1 S k=3+1 |

for every jz1 and iz0, for some S ¢ Bl[H]. Hence, for every jz1,

Vimsup| o]l - ITll Fs 17 wuglk) + 57 uplk) »0 as oo,
-0 : k=Jj+1 k=j+1
since T,S € B [H]. Therefore (D,F) =—> (B}, so that (D,F) = (A}, since

(B,D) ==> (A). In order to verify that the results in Diagram3plus (G) = (F)
comprise all possible implications among assertions (A) to (G), set H=2,. First
we take T=diag(mT) 6 81[22]+ and Ti=diag(mTi) € 81[22]+ for every 120, with
Mr=X and me =X, for those sequences XsX; € %, for every iz0 (which are all
nondecreasing and nonnegative) used as counter-examples in the proof of Theorem
1. This establishes that no further implication, involving only assertions (A)
to (F), can be added to Diagram 3. Now let {ek; kz1} be the standard orthonormal
basis for 2,. If we set T=0 and T =(i+1)""diag(e, ,) for every i20 it follows
that (A,F) = (G). Hence  (A,B,C,D,E,F) == (G). By setting
T.=2""diag([1+(-1)"Te +[1+(-1)"*12e,) for every i20 it can be verified that
(B,G) == (D). Thus (B,C,E,F,G) == (D), and so (B,C,E,F,G) == (A). It is
obvious that (C,E,F,G) = (B) and (C,F,G) == (E). Therefore, besides
(6) => (F), no other result invelving assertions (A) to (&) can be added to
Diagram 3. Finally let us consider assertions (H) to (K). It is trivial that
(H) = (J), and (H,I) == (K) according to Remark 2. Now suppose (J) holds
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true and take any orthonormal basis {ek; kz21} for H, so that

it

7Tl = T T e

A

J o
k§1 <[T1-T|ek; &> + )

<Se, ; e >
k=3+1 k> "k

for every jz1 and i20. Hence, for every jz1,

Tim sup || T,-T < ¥ <Se ;e >0 as e
s 1T, 5 T <se e

whenever (K) also holds true, by Remark 2, since S e Bl[H]+.Then(J,K) => (A).

4. PARTICULAR RESULTS

As one could expect, some further and sharper results can be drawn from
Theorem 2 for the case of correlation operators, where the nuclear sequence
involved is supposed to be also nonnegative. So let us take a closer look at
this special case.

Correlation operators. If we take a correlation sequence {Ti € Bl[H]+; 1207,
the statements (C) and (G) in Theorem 2 become equivalent to

(C™) sup tr(T,) <=
i20 !

(6%) T, sSe Bl[H]+ vizo ,

respectively, since [T]:T <==> T & B[H]". The first further result we get from
Theorem 2 is that now

(B¥,D) <—> (A) ,
where assertion (B) can be replaced by

(8%) tr(Ti) + tr{T) as jae

since B[HI" is closed in B[H], so that assertion (E) can also be replaced by

(E¥) T s Bl[H]+
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Thus, trace-norm convergence for sequences of  correlation operators means
uniform convergence added to a trace convergence condition. Also notice that
Diagram 3 plus the result (G) —> (F) still characterizes all possible implica-
tions among assertions {A) to (G), since correlation operators have been used
as counter-examples in the proof of Theorem 2. Now let us assume further that,

for each 20 and for some S s BI{H]+,
(H) either 0ST.sTsS or OsTST.sS

which is equivalent to (H,E¥) for correlation sequences. Under assumption (HV)
we get from Theorem 2 that all the preceding convergence praperties are equi-
valent, since (H,I) =~=> (A) and tr(-):Bl[H] - [ is a linear functional. That
is, if (H') holds true, then

(A) <= (B) <= (B") <= (D) < (I} == (K)

It is worth noticing that the property (H+), which ensures the above con-
vergence equivalence, is shared by a somewhat wide class of convergent correla-
tion sequences. For instance, consider a sequence {Ti € B[H]; iz0}. It is said

to be nondecreasing or nonincreasing if TigTi+ for every iz20 or Ti+1§Ti for

every 120, respectively. It is said to be monolone ifit is either nondecreasing
nonincreasing. It is said to converge from below or<from above if it converges
to T ¢ B[H] and T1§T for every iz0 or TéT,i for every i20, respectively. It s
said to be one-sided convergent if it converges either from belowor from above.
It is said to be locally one-sided convergent if it converges to T e B[H] and
for each 120 either TigT or TéTi. Obviously monotone convergence implties  one-
-sided convergence, which implies local one-sided convergence. A  convergent
sequence with the property (H") is just a locally one-sided convergent correla-

tion sequence with a correlation limit.

5. ILLUSTRATIVE EXAMPLES

Let H denote the Hilbert space of all second-order H-valued random vari-

ables, and let E{wow} ¢ Bl[H]+ denote the correlation operator of w ¢ H, as
usual (e.g. see [12]). Now consider the following discrete autonomous linear
system:
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where L e B[H] is the system operator, {Vi 6 H; 120} is the input disturbance,
and {ui e H; 120} is the state sequenceth5§§yTg7for ;1mp1icity that the dinput
disturbance is a white noise sequence ({.e. E{viovj}=0 for every izj), and set
for every iz0

R, = E{Viovi} ¢ B,[HI" , Q;

+
;= E{uioui} € B, [H]

The purpose of this section 1s to provide some simpleillustrative examples
for applications of Theorem 2. We shall focus our attention on two useful re-
sults, which play an essential role in the stability theory for infinite-dimen-
sional discrete linear systems operating in a stochastic environment as in (1).
Such results will be concerned with the asymptotic behaviour of the state
correlation sequence {Qi = Bl[H]+; i20}. More precisely, we shall be dealing
with the question of whether

Q; > Qe B,[HI* as joroo

in some topology. By convergence in some topology we mean weak, strong, uniform,
or trace-norm convergence, which will be denoted by 2> 2> X5 op Ji>, res-
pectively. Note that the 1imit of a correlation sequence is necessarily a non-
negative operator, since B[H]* is (weakly) closed in B[H]. On the other hand,
the (nonnegative) limit may not be a correlation operator, since it may fail to
be nuclear. However, if we expect that a second-order random sequence has a
correlation sequence converging to a correlation operator, such that its 1imit
is a correlation operator for some second-order random variable, then we have
to assume further that the limit is nuclear, as we did above. Such a further
assumption may be dropped out in the case of trace-norm convergence, when

nuclearity necessarily holds.

Example 1. Consider the Tinear system in (1), and suppose the input disturbance
is correlation stationary. Note that the state correlation sequence converges
weakly if andonly if it converges strongly. We claim further that "it either con-

verges in the trace-norm or it does not converge to a correlation operator at
all".

Proof. If R1=R 6 Bl[H]+ for every iz0, then it is a simple matter to verify
that

Q.i=

i Jgy *J +
7 UL 6 B[H] viz0 ,
J:

0
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so that

0; ¥>qeBHI' — 0:0Q-0,5Q Vi

(or equivalently, 05Q,=Q ¥iz0), since for every iz0

i . .
Qs e Rt PR <0
J: =

for all x ¢ H. Hence weak and strong convergence are trivially equivalent, since
OgQ-Qi for every iz0, so that

g > Q = 0, = Q

according to Remark 2. Furthermore, by a straightforward application of Theorem
2 (cf. (H,1} = (A)) we get the desired result, since Q-Q;5Q for every iz0.
That is

0; 2> 0eB Y — g .

Example 2. Consider the following mean-sgquare stability result [12]. If the
system operator is uniformly asymptotically stab]e,;fhen uniform convergence for
the correlation sequences is preserved through the Tlinear system (1). That is,
if rU(L)<1 then

R, 4> R e BIHI® — ;4> Qe BT,

where rg(L) denotes the spectral radius of L ¢ B[H]. Assuming rO(L)<1 we claim
further that "nuclearity for the uniform limits R and Q is also preserved, and
trace-norm convergence for the correlation sequences is preserved as well”.

Proof. First consider the following auxiliary result from [12]. Suppose

ro(L)<1, so that the above mean-square stability result holds true. Then

.I . *'
R, 4R = P. def. y LIRS s Q.
j=0
Now recall that

+ e oo J -
N S LU AR L TSR
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because the above series converges whenever rG(L)<1. Hence, since 0<P.sQ for
every iz0, . BN

Ry > R e ByIHTY  —> . L5 Qe B,[HI",
as an immediate consequence of Theorem 2 (cf. (C,D) => (E) and (G,D) == (A)).
Moreover, it is readily verified that '
Uiy e .
Q; = I LVR.L ¥iz0 ,
3=0 ’

so that
e .
Foeeill, = 3, WLIEIReRI, + 0 as e
whenever || Ri—RHl-+ 0 as -, since r_(L)<1. Thus
logall, = o)l + pal »0  as s,
and we get the final result:

R, => R¢ B,[HI" — Q. %> QB8 HI" .

6. CONCLUDING REMARKS !

The results of this paper were heavily based on Lemma 1. Actu51Ty;Theor§ﬁs
1 and 2 were supported by Lemmas 1 and 2, respectively, and Lemma 2 came out of
Lemma 1 with the help of Remark 3. ' '

In Theorem 1 we have established all possible imp]i;ations.amqngsomebasic
asymptotic properties for sequences of absolutely summable sequehées, in a
Banach space X ({.e. for sequences in 2,{X)). The results proved in Theorem 2,
which mirror those in Theorem 1, are concerned with asymptotic properties .for
sequences of nuclear operators on a separable Hilbert space H (Lxe. for  se-
quences in B, [H]) and, in particular, for sequences of correlation opefafqr§ (4.e.
for séquences in Bl[H]+).

Two important dppIications of Theorem 2 were considered in Examples t and
2. There we presented some very simple new proofs, based onadirect application
of Theorem 2, for some relevant results on mean-square stability of infinite-di
mensional discrete linear systems (e.g. see [1¥]-and [12]). '
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